
Semantics and
Verifications

Based on the lectures of Colin Riba
Notes written by Hugo Salou

September 17, 2025

Contents

1 Introduction. 3

2 Transition systems. 5
2.1 Transition systems. 5
2.2 Program graphs. 6
2.3 Transition system of a program graph. 8

3 Linear Time Properties. 11
3.1 Linear-time properties. 11
3.2 Decomposition of a linear-time property. 14

3.2.1 Safety properties. 14
3.2.2 Safety properties and trace equivalences. 16

– 2/17 –– 2/17 –– 2/17 –

1 Introduction.

Let us give precisions on the terms in the name of the course, and in
the broader space of semantics and verifications.

Verification. Formal techniques to ensure the correctness software or
hardware of systems.

Model Checking. “Automatic” checking of the correctness by means
of exhaustive exploration.

Example 1.1. Consider a program that is 10 lines long, contains 3
booleans variables and 5 integers variables in the range {0, . . . , 9}.
The number of states for this program is:

10 × 23 × 105 = 8 000 000.

The real issue with the state exploration problem is the factor
105, coming from the use of 5 integers.

Example 1.2. Consider a server and n clients. Clients can make
requests to the server and the server can answer a client. The
specification of this server should include the following:

. Each client which makes a request is eventually answered.

. We abstract away from precise quantitative constraints.

We will sometimes reason about an infinite amount of executions.
For example, if some client makes infinitely-many requests (then it’ll
have infinitely-many answers). Infinite sequences are represented by
ω-words, i.e. infinite words indexed by N. Thus, ω-words on some

– 3/17 –– 3/17 –– 3/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

alphabet Σ are functions N → Σ. We will denote Σω the set of those
infinite words on the alphabet Σ.

If |Σ| ≥ 2, then the set Σω is uncountable.

This course will cover the following:

. Transition systems;

. Linear-time properties;

. Topology;

. Orders and Lattices;

. Linear Temporal Logic (LTL);

. Büchi automata;

. Stone duality (mostly in homework);

. Bisimilarity/bisimulation;

. Modal Logic.

Ressources from this course include:

. the course notes (available online, non-exhaustive);

. Baier, C. and Katoen, J.-P., Principles of Model Checking, MIT
Press, 2008.

Prerequisites for this course include:

. First-order logic (see my course notes for the “Logique” L3
course, in french);

. Finite automata (“FDI” L3 course).

Evaluation for this course will be in two parts: the final exam (50 %)
and the homework, in two parts (25 % each).

The tutorials will be done by Lison Blondeau-Patissier.

– 4/17 –– 4/17 –– 4/17 –

https://perso.ens-lyon.fr/colin.riba/teaching/sv/notes.pdf
https://hugos29.dev/data/ens1/logique.pdf

2 Transition systems.

2.1 Transition systems.

Definition 2.1. A transition system is a tuple

TS = (S, Act, →, I, AP, L)

where

. S is the set of states;

. Act is the set of actions;

. → ⊆ S × Act × S the transition relation;

. I ⊆ S the set of initial states;

. AP is the set of atomic propositions;

. L : S → ℘(AP) ∼= 2AP is the state labelling function.

We will write s
α−→ s′ when (s, α, s′) ∈ →.

Example 2.1 (Beverage Vending Machine, BVM). We can model
a beverage vending machine using a diagram like in figure 2.1.
Here we have that:

. S = {pay, select, soda, beer},

. I = {pay},

. Act = {ic, τ, gb, gs}.1

– 5/17 –– 5/17 –– 5/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

pay

selectsoda beer

gs gb

τ

ic

τ

Figure 2.1 Transition system for the BVM

We can define the labels:

L(pay) = ∅ L(soda) = L(beer) = {paid, drink} L(select) = {paid},

with AP = {paid, drink}.

2.2 Program graphs.
The goal is to represent the evaluation of a program.

Definition 2.2 (Typed variables). . A set Var of variables.

. For each variable x ∈ Var, consider a set Dom(x).

. Given TV = (Var, (Dom(x))x∈Var), we define

Eval(TV) =
∏

x∈Var
Dom(x),

the set of valuations of the form η : x ∈ Var 7→ η(x) ∈
Dom(x) (in the sense of a dependent function type).

1The meaning of the actions are the following: ic means insert coin, gb means
get beer and gs for get soda.

– 6/17 –– 6/17 –– 6/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

start

select

nb
>

0 : g
b

ns
>

0 : g
s

ns
∈ {0

} ∧ nb
∈ {0

} : n
t

tru
e : i

c

Figure 2.2 BVM as a program graph

Definition 2.3 (Program graph). A program graph is a tuple

PG = (Loc, Act, Effect, ↪→, Loc0, g0),

where

. Loc is the set of locations (lines of codes);

. Act is the set of actions;

. Effect : Act × Eval(TV) → Eval(TV);

. ↪→ ⊆ Loc × Conditions × Act × Loc where conditions are
propositional formula built from atoms of the forms “x ∈
D” for some variable x and some set D ⊆ Dom(x);

. Loc0 ⊆ Loc the set of initial locations;

. g0 is the initial condition.

We will write `
g:α

↪−→ `′ for (`, g, α, `′) ∈ ↪→.

Example 2.2 (BVM as a program graph). In figure 2.2, we use

. Loc = {start, select};

– 7/17 –– 7/17 –– 7/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

. Var = {ns, nb};

. Act = {ic, nt, gs, gb, refill};

. Loc0 = {start};

. g0 = ns ∈ {max} ∧ nb ∈ {max}

.

Effect : Act × Eval(TV) −→ Eval(TV)
(refill, η) 7−→ [ns 7→ max, nb 7→ max]

(gs, η) 7−→ η[ns 7→ η(ns) − 1]
(gb, η) 7−→ η[nb 7→ η(nb) − 1]

2.3 Transition system of a program graph.

Definition 2.4. Given TV and PG a program graph, we define

TS(PG) := (S, Act, →, I, AP, L)

where

. S = Loc × Eval(TV);

. AP = Loc ∪ Conditions ;

. I = {(`0, η) | `0 ∈ Loc0, η |= g0};

. → is defined by:

`
g:α

↪−→ `′ η |= g

(`, η) α−→ (`′, Effect(α, η)),

. and L(`, η) = {`} ∪ {g | η |= g}.

– 8/17 –– 8/17 –– 8/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

start, ns = 1, nb = 1

select, ns = 1, nb = 1

start, ns = 0, nb = 1 start, ns = 1, nb = 0

select, ns = 0, nb = 1 select, ns = 1, nb = 0

start, ns = 0, nb = 0

refill

ic

gs gb

ic ic

gb gs

refill

refill refill

Figure 2.3 Transition system of the BVM program graph

– 9/17 –– 9/17 –– 9/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

Example 2.3. The BVM program graph example seen in the
previous example can be transformed as a transition system
thanks to the previous definition; it is shown in figure 2.3. To
simplify, we assume max = 1.

– 10/17 –– 10/17 –– 10/17 –

3 Linear Time Properties.

Definition 3.1. Let Σ be an alphabet (i.e. a set).

1. A ω-word on Σ is a function σ : N → Σ. We denote Σω for
the set of ω-words on Σ.

2. We define Σ∞ := Σω ∪ Σ? the set of finite or infinite words.

3. Given σ̂ ∈ Σ? and σ ∈ Σ∞, we say that σ̂ is a prefix of σ,
written σ̂ ⊆ σ, whenever

∀i < length(σ̂), σ̂(i) = σ(i).

4. Given σ ∈ Σ∞, we define

Pref(σ) := { σ̂ ∈ Σ? | σ̂ ⊆ σ },

which we extend to sets of words: for E ⊆ Σ∞,

Pref(E) :=
⋃

σ∈E

Pref(σ).

Remark 3.1. . The prefix order ⊆ on Σ? is generally a partial
order: there are u, v ∈ Σ? such that u 6⊆ v and v 6⊆ u.

. Given σ ∈ Σ∞, the prefix order ⊆ on Prefix(σ) is a linear
(or total order).

3.1 Linear-time properties.
Let AP be a set of atomic propositions.

– 11/17 –– 11/17 –– 11/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

pay

selectsoda beer

gs gb

τ

ic

τ

{paid} {paid, drink}{paid, drink}

∅

Figure 3.1 Transition system for the BVM with labels

Definition 3.2. A linear-time property (sometimes written LT
property) on AP is a set P ⊆ (2AP)ω.

The idea is that a linear-time property A : N → 2AP specifies, for
each i ∈ N, a set σ(i) ⊆ AP of all atomic propositions are assumed
at time i.

Example 3.1. For the Beverage vending machine (shown in
figure 3.1), we can have the following linear-time properties:

. {σ ∈ (2AP)ω | ∀n ∈ N, drink ∈ σ(n) =⇒ ∃k < n, paid ∈ σ(k)},

. {σ ∈ (2AP)ω | ∀n ∈ N, #{k ≤ n | drink ∈ σ(k)} ≤ #{k ≤ n | paid ∈ σ(k)}},

. {σ ∈ (2AP)ω | (∃∞t, paid ∈ σ(i)) =⇒ (∃∞t, drink ∈ σ(t))},

. {σ ∈ (2AP)ω | (∀∞t, paid 6∈ σ(t)) =⇒ (∀∞t, drink 6∈ σ(t))}.

Remark 3.2. The notations ∃∞ and ∀∞ are “infinitely many” and
“ultimately all” quantifiers:

. ∀∞t, P (t) is, by definition, ∀N ∈ N, ∃t ≥ N, P (t);

. ∃∞t, P (t) is, by definition, ∃N ∈ N, ∀t ≥ N, P (t).

– 12/17 –– 12/17 –– 12/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

Definition 3.3. A (finite or infinite) path in TS is a finite or
infinite sequence π = (si)i ∈ S∞ which respects transitions: for
all i, we have si

a−→ si+1 for some a ∈ Act.

A path π = (si)i is initial if s0 ∈ I.

Definition 3.4 (Trace). 1. The trace of a path π = (si)i is the
(finite or infinite) word

L(π) :=
(
L(si)

)
i

∈ L∞.

2. We define

. Tr(TS) := {L(π) | π is a finite or infinite path in TS};

. Trω(TS) := {L(π) | π is a infinite path in TS};

. Trfin(TS) := {L(π) | π is a finite path in TS}.

Definition 3.5 (Satisfaction of a LT property). We say that a
transition system TS over AP satisfies a LT property P on AP,
written TS |≈ P , when Trω(TS) ⊆ P .

Example 3.2. The BVM satisfies all the properties from example 3.1.

Example 3.3. We use a different transition system BVM′ to
model the beverage vending machine, as seen in figure 3.2. The
two transition systems are equivalent in the sense that:

Trω(BVM′) = Trω(BVM),

so, for any LT Property P ⊆ (2AP)ω,

BVM′ |≈ P iff BVM |≈ P.

– 13/17 –– 13/17 –– 13/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

pay

sels selbsoda beer

gs gb

τ

ic
ic

τ

{paid} {paid} {paid, drink}{paid, drink}

∅

Figure 3.2 Transition system for the alternative BVM

We have a very simple result, which we will (probably) prove in the
tutorials.

Proposition 3.1. Given two transition systems TS1 and TS2 over
AP, then the following are equivalent:

. Trω(TS1) ⊆ Trω(TS2),

. ∀P ⊆ (2AP)ω, TS2 |≈ P =⇒ TS1 |≈ P .

3.2 Decomposition of a linear-time property.
In this section, we introduce the notions of a “safety property” and a
“liveness property” such that, for any LT property P ,

1. there exists a safety property Psafe and a liveness property
Pliveness such that

P = Psafe ∩ Pliveness;

2. P is a liveness and a safety property if and only if P = (2AP)ω.

3.2.1 Safety properties.

The idea of a safety property is to ensure that “nothing bad is going
to happen.”

– 14/17 –– 14/17 –– 14/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

Definition 3.6. We say that P ⊆ (2AP)ω is a safety property if
there exists a set Pbad ⊆ (2AP)? such that

σ ∈ P ⇐⇒ Pref(σ) ∩ Pbad = ∅.

Example 3.4. Considering the examples of LT-properties from
example 3.1,

. Property (1) is a safety property: we can consider

P
(1)
bad = {σ̂ ∈ Σ? | drink ∈ σ̂(n) ∧ ∀i < n, paid 6∈ σ̂(i)},

where n is the length of σ̂.

. Property (2) is a safety property: we can consider

P
(2)
bad = {σ̂ ∈ Σ? | #{t | paid ∈ σ̂(t)} < #{t | drink ∈ σ̂(t)}}.

. Properties (3) and (4) are not safety properties: for any
finite word σ̂ ∈ (2AP)ω, there exists σ ∈ (2AP)ω such that
σ̂ ⊆ σ and σ ∈ P .

Example 3.5 (Traffic Light). We consider a traffic light as a
transition system over AP = {G, Y, R}, as shown in figure 3.3.
An example of a safety property is

∀n, R ∈ σ(n) =⇒ n > 0 and Y ∈ σ(n − 1).

G Y R

{G} {Y} {R}

Figure 3.3 Transition system for the traffic light

– 15/17 –– 15/17 –– 15/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

{a} {b}

Figure 3.4 Transition system for the traffic light

Example 3.6. Consider the transition system shown in figure 3.4,
a safety property P with Pbad = {a}?{b} is satisfied: TS |≈ P .
This is true since Trω(TS) = {a}ω. However, when we consider
finite (instead of infinites) traces, we have that Trfin(TS)∩Pbad 6=
∅.

Definition 3.7 (Terminal state). A state s ∈ S of a transition
system TS is terminal if

∀s′ ∈ S, ∀α ∈ Act, s 6α−→ s′.

Proposition 3.2. Let TS be a transition system without terminal
states, and a safety property P with the set of “bad behaviours”
is written Pbad. Then,

TS |≈ P if and only if Trfin(TS) ∩ Pbad = ∅.

Proof. See the course notes in section § 3.2.3.

3.2.2 Safety properties and trace equivalences.

Lemma 3.1. Let TS and TS ′ be two transition systems over AP
without terminal states. Then, the following are equivalent:

. Trfin(TS) ⊆ Trfin(TS ′);

. for any safety property P , TS ′ |≈ P implies TS |≈ P .

– 16/17 –– 16/17 –– 16/17 –

Hugo Salou – m1 ens lyon Semantics and Verifications

Proof. . “ =⇒ ”. This is true by the last proposition.

. “ ⇐= ”. Let P be a safety property with

Pbad = (2AP)? \ Trfin(TS ′).

So, TS ′ |≈ P hence TS |≈ P by assumption. Therefore,
Trfin(TS) ⊆ Trfin(TS ′) by the last proposition.

– 17/17 –– 17/17 –– 17/17 –

	Introduction.
	Transition systems.
	Transition systems.
	Program graphs.
	Transition system of a program graph.

	Linear Time Properties.
	Linear-time properties.
	Decomposition of a linear-time property.
	Safety properties.
	Safety properties and trace equivalences.

