— Homework —

Semantics and Verification

Hugo SALOU

1 Toward Stone Duality.

Question 1. Show that every Stone space (X,Ω) is Hausdorff (if $x,y\in X$ are distinct, there there are disjoint $U,V\in\Omega$ such that $x\in U$ and $y\in V$).

Let $x, y \in X$ be two distinct points of a Stone space (X, Ω) . As, (X, Ω) is T_0 and without loss of generality, there exists $W \in \Omega$ such that $x \in W$ and $y \notin W$. As (X, Ω) is zero-dimensional, we can write $W =: \bigcup_{i \in I} W_i$ where $W_i \in \mathbf{K}\Omega$ for every $i \in I$. Thus, there exists a clopen set $U := W_i \in \Omega$ such that $x \in W_i \subseteq U$. Define $V := X \setminus U \in \Omega$, and we have that $x \in U$, $y \in V$ (as $y \notin W \supseteq U$) and the open sets U and V are disjoint. We can conclude that every Stone space is Hausdorff.

Question 2. Show that \leq is a partial order on $\mathfrak{L}(LML)$.

We start by showing the following lemma.

Lemma 1. We have $\phi \leq \psi$ if and only if $\llbracket \phi \rrbracket \subseteq \llbracket \psi \rrbracket$.

Proof. We have that $\phi \leq \psi$ iff $\phi \equiv \phi \wedge \psi$ iff $[\![\phi]\!] = [\![\phi \wedge \psi]\!] = [\![\phi]\!] \cap [\![\psi]\!]$ (that last equality is by definition of $[\![-]\!]$) iff $[\![\phi]\!] \subseteq [\![\psi]\!]$.

We can thus easily show that \leq is a partial order.

- \triangleright *Reflexivity*. As $\llbracket \phi \rrbracket \subseteq \llbracket \phi \rrbracket$, we have that $\phi \le \phi$ for every $\phi \in \mathfrak{L}(\mathsf{LML})$.
- ▶ *Transitivity*. For any ϕ , ψ , ϑ ∈ $\mathfrak{L}(\mathsf{LML})$, if $\phi \le \psi$ and $\psi \le \vartheta$ then, by the lemma, $\llbracket \phi \rrbracket \subseteq \llbracket \psi \rrbracket \subseteq \llbracket \vartheta \rrbracket$, thus we have $\llbracket \phi \rrbracket \subseteq \llbracket \vartheta \rrbracket$, *i.e.* $\phi \le \vartheta$.
- ▶ Antisymmetry. For any $\phi, \psi \in \mathfrak{L}(\mathsf{LML})$, if $\phi \leq \psi$ and $\psi \leq \phi$ then, by double inclusion with the above lemma, $\llbracket \phi \rrbracket = \llbracket \psi \rrbracket$ thus $\phi = \psi$ as we consider LML-formulae quotiented by \equiv .

2 Lattices and Boolean Algebras.

2.1 Semilattices.

Question 3. Let (L, \leq) be a partial order.

- 1. Show that (L, \leq) is a meet semilattice if, and only if, L has binary meets $\wedge : L \times L \to L$ and greatest element $\top \in L$.
- 2. Show that (L, \leq) is a join semilattice if, and only if, L has binary joins $\vee : L \times L \to L$ and least element $\perp \in L$.
- **1.** If (L, \leq) is a meet semilattice, then L has binary meets and a greatest element $T = \bigwedge \emptyset$ (any element is a lower bound of \emptyset , thus the greatest lower bound of \emptyset is the greatest element).

Now, suppose (L, \leq) has a binary meet \land and a greatest element \top . Consider $\{a_i \mid i \in I\}$ a finite subset of elements of L. By induction on $\#I \in \mathbb{N}$, we define $\bigwedge_{i \in I} a_i \in I$ and show that $\bigwedge_{i \in I} a_i$ is a meet of the finite set $\{a_i \mid i \in I\}$ (like the notation suggests).

- ▶ Define $\bigwedge_{i \in \emptyset} a_i := \top \in L$; as any element is a lower bound of \emptyset , the greatest lower bound of \emptyset is the greatest element.
- ▶ Consider $I := J \sqcup \{i\}$. By induction hypothesis, we have that $\bigwedge_{j \in J} a_j$ exists in L and is a meet of $\{a_j \mid j \in J\}$ in (L, \leq) . Define

$$\bigwedge_{k\in I} a_k := \left(\bigwedge_{j\in J} a_j\right) \land a_i \in I.$$

We have that $\bigwedge_{k \in I} a_k$ is a lower bound of $\{a_k \mid k \in I\}$. Consider an element a_k with $k \in I$. If $k \in J$ then $a_k \leq \bigwedge_{j \in J} a_j \leq \bigwedge_{k' \in I} a_{k'}$. Otherwise k = i and we immediacy have that $a_i \leq \bigwedge_{k' \in I} a_{k'}$.

Consider a lower bound $b \in L$ of $\{a_k \mid k \in I\}$, then b is a lower bound of $\{a_j \mid j \in J\}$ and $b \le a_i$. We have $b \le \bigwedge_{j \in J} a_j$ and $b \le a_i$, therefore $b \le \bigwedge_{k \in I} a_k$.

We can conclude that $\bigwedge_{k \in I} a_k$ is a meet of $\{a_k \mid k \in K\}$.

Finally, we have that (L, \leq) has finite meets.

2. This results follows from 1 when considering the partial order (L, \ge) , by duality. Meets in (L, \ge) are exactly joins in (L, \le) , and the greatest element of (L, \ge) is the least element of (L, \le) , and *vice versa*.

Note. In the following, when I will be dealing with multiple partial orders on the same set ($e.g. \le \text{and} \ge$), I will write \bigwedge_{\le} for the meet operator in poset (I, \le) , \bigvee_{\le} for the join operator in poset (I, \le) , \bigvee_{\le} for the greatest element in poset (I, \le) and \bigvee_{\le} for the least element in poset (I, \le) .

Question 4. Prove the following.

- 1. Let (L, \leq) be a meet semilattice with binary meets $\wedge : L \times L \to L$ and greatest element $\top \in L$. Then (L, \wedge, \top) is a commutative mooned in which every element is idempotent. Moreover, we have $a \leq b$ iff $a = a \wedge b$.
- 2. Let (L, \leq) be a join semilattice with binary joins $\vee : L \times L \to L$ and least element \perp . Then (L, \vee, \perp) is a commutative mooned in which every element is idempotent. Moreover, we have $a \leq b$ iff $b = a \wedge b$.
- **1.** Let $a, b, c \in L$. First, we have that $a \land b = \bigwedge \{a, b\} = \bigwedge \{b, a\} = b \land a$ thus the binary meet operation \land is commutative. Then, as a special case of the previous question, we have that a and $\top \land a$ are both meets of $\{a\}$. And, by unicity of meets (*i.e.* antisymmetry of \leq , mainly), they are equals. Also as a special case of the previous question, we have that elements

$$a \wedge (b \wedge c) = \top \wedge (a \wedge (b \wedge c))$$

and

$$(a \land b) \land c = c \land (a \land b) = \top \land (c \land (a \land b))$$

are both meets of the set $\{a, b, c\}$, thus are equal. Next, we have that

$$a \wedge a = \bigwedge \{a, a\} = \bigwedge \{a\} = \top \wedge a = a$$

(penultimate equality is from last question), thus $a \wedge a = a$. Finally, we have that:

ightharpoonup if $a = a \land b$ then a is a lower bound of $\{a, b\}$ thus $a \le b$;

- ▶ if $a \le b$ then $a = a \land b$ as a is a lower bound of $\{a, b\}$ and any lower bound c of $\{a, b\}$ must satisfy $c \le a$.
- **2.** Consider the meet semilattice (L, \geq) and apply the results above. Meets in (L, \geq) are exactly joins in (L, \leq) , and the greatest element of (L, \geq) is the least element of (L, \leq) , and *vice versa*. The last statement follows from the equivalence:

$$a \le b$$
 iff $b \ge a$ iff $b = a \land b$ iff $b = a \lor b$,

where the second "iff" follows from the result above for (L, \geq) , and the last one follows from the equality $a \wedge_{\geq} b = a \vee_{\leq} b$.

Question 5. Prove the following.

- 1. Given a commutative monoid (L, \wedge, \top) in which every element is idempotent, let $a \leq_{\wedge} b$ iff $a = a \wedge b$. Then (L, \leq_{\wedge}) is a meet semilattice with binary meets given by \wedge and greatest element \top .
- 2. Given a commutative monoid (L, \vee, \perp) in which every element is idempotent, let $a \leq_{\vee} b$ iff $b = a \vee b$. Then (L, \leq_{\vee}) is a join semilattice with binary joins given by \vee and least element \perp .
- **1.** Let us start by showing that (L, \leq_{\wedge}) is a partial order.
 - ightharpoonup Reflexivity. As $a \wedge a = a$ by idempotence, we have $a \leq_{\wedge} a$.
 - ▶ Antisymmetry. If $a \leq_{\wedge} b$ and $b \leq_{\wedge} a$ then, by commutativity, we have $a \wedge b = a = b$.
 - ▶ *Transitivity.* If $a \leq_{\land} b$ and $b \leq_{\land} c$ then, by associativity,

$$a = a \wedge b = a \wedge (b \wedge c) = (a \wedge b) \wedge c = a \wedge c,$$

thus $a \leq_{\wedge} c$.

By question 3, it suffices to show that (L, \leq_{\wedge}) that binary meets for poset (L, \leq_{\wedge}) are \wedge and that \top is the greatest element of poset (L, \leq_{\wedge}) . Consider a, b, c three arbitrary elements of L.

▶ For any $b \in L$, we have $b \land \top = b$ (as \top is a neutral element) and thus $b \leq_{\wedge} \top$ for all $b \in L$, so \top is the greatest element of (L, \leq_{\wedge}) .

 \triangleright Firstly, element $a \land b$ is a lower bound of $\{a, b\}$ as

$$a \wedge b \leq_{\wedge} a$$
 iff $a \wedge b = (a \wedge b) \wedge a$
 $a \wedge b \leq_{\wedge} b$ iff $a \wedge b = (a \wedge b) \wedge b$

and the latter equalities are true by idempotence, associativity, and finally commutativity. Secondly, consider $c \in L$ such that we have $c \leq_{\wedge} a$ and $c \leq_{\wedge} b$, then $c \wedge a = c = c \wedge b$. We therefore have that $c \leq_{\wedge} a \wedge b$, as

$$c \wedge (a \wedge b) = (c \wedge a) \wedge b = c \wedge b = c$$
.

We can conclude that \wedge is the binary meet operator in (L, \leq_{\wedge}) .

2. Applying the previous result with the commutative monoid (L, \vee, \perp) , we obtain that $(L, \geq_{\vee})^a$ is a meet semilattice where binary meets for \geq_{\vee} are given by \vee and the greatest element for \geq_{\vee} is \perp . We can thus conclude that (L, \leq_{\vee}) is a join semilattice where binary joins for \leq_{\vee} are given by \vee and the least element for \leq_{\vee} is \perp .

Question 6. Show the following, for the partial order $(\mathfrak{L}(LML), \leq)$:

1. $(\mathfrak{L}(LML), \leq)$ is a meet semilattice with greatest element \top and binary joins given by

$$- \wedge -: \mathfrak{L}(\mathsf{LML}) \times \mathfrak{L}(\mathsf{LML}) \longrightarrow \mathfrak{L}(\mathsf{LML})$$
$$(\phi, \psi) \longmapsto \phi \wedge \psi;$$

2. $(\mathfrak{L}(LML), \leq)$ is a join semilattice with least element \perp and binary joins given by

$$- \vee - : \mathfrak{L}(\mathsf{LML}) \times \mathfrak{L}(\mathsf{LML}) \longrightarrow \mathfrak{L}(\mathsf{LML})$$
$$(\phi, \psi) \longmapsto \phi \vee \psi.$$

We will use the lemma proven in question 2 (lemma 1, page 1).

^aThe notation is, in a way, "context-sensitive," as for an arbitrary monoid $(M, \circledast, \mathbf{I})$, we can either define $a \leq_{\circledast} b$ as $a \circledast b = a$ or $a \leq_{\circledast} b$ as $a \circledast b = b$.

1. We only need to show that $- \land -$ defines a binary meet for (£(LML), ≤) and that \top is a greatest element.

For any $\phi \in \mathfrak{L}(LML)$, we have $\phi \leq T$ as $\llbracket \phi \rrbracket \subseteq \llbracket T \rrbracket = (\mathbf{2}^{AP})^{\omega}$, thus T is the greatest element.

For any formulae $\phi, \psi \in \mathfrak{L}(\mathsf{LML})$, we have that $\phi \land \psi \leq \phi$ and $\phi \land \psi \leq \psi$ as both $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket$ are supersets of $\llbracket \phi \land \psi \rrbracket = \llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket$ (by definition of interpretation $\llbracket - \rrbracket$). Then, if $\vartheta \leq \phi$ and $\vartheta \leq \psi$, we have that $\llbracket \vartheta \rrbracket \subseteq \llbracket \phi \rrbracket$ and $\llbracket \vartheta \rrbracket \subseteq \llbracket \psi \rrbracket$ thus $\llbracket \vartheta \rrbracket \subseteq \llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket = \llbracket \phi \land \psi \rrbracket$, therefore $\vartheta \leq \phi \land \psi$.

We can conclude that $(\mathfrak{L}(LML), \leq)$ is a meet semilattice with greatest element \top and binary meets given by $- \land -$.

2. We only need to show that $- \vee -$ defines a binary join for $(\mathfrak{L}(LML), \leq)$ and that \perp is a least element.

For any $\phi \in \mathfrak{L}(LML)$, we have $\bot \le \phi$ as $\emptyset \subseteq \llbracket \bot \rrbracket \subseteq \llbracket \phi \rrbracket$, thus \bot is the least element.

For any formulae $\phi, \psi \in \mathfrak{L}(\mathsf{LML})$, we have that $\phi \leq \phi \vee \psi$ and $\psi \leq \phi \vee \psi$ as both $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket$ are subsets of $\llbracket \phi \vee \psi \rrbracket = \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket$ (by definition of interpretation $\llbracket - \rrbracket$). Then, if $\phi \leq \vartheta$ and $\psi \leq \vartheta$, we have that $\llbracket \phi \rrbracket \subseteq \llbracket \vartheta \rrbracket$ and $\llbracket \psi \rrbracket \subseteq \llbracket \vartheta \rrbracket$ thus $\llbracket \phi \vee \psi \rrbracket = \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket \subseteq \llbracket \vartheta \rrbracket$, therefore $\phi \vee \psi \leq \vartheta$.

We can conclude that $(\mathfrak{L}(LML), \leq)$ is a join semilattice with least element \perp and binary joins given by $- \vee -$.

Question 7. Show that a map of meet (resp. join) semilattices is monotone.

Let $f: L \to L'$ be an arbitrary function where (L, \leq) and (L', \leq') are partial orders.

1. Suppose $f:(L, \leq) \to (L', \leq')$ is a map of meet semilattices. Let $a, b \in L$. If $a \leq b$, then $a \land b = a$ and, as f preserves finite meets,

$$f(a) \wedge' f(b) = f(a \wedge b) = f(a),$$

and thus $f(a) \leq' f(b)$. Therefore, f is monotone.

2. Suppose $f:(L, \leq) \to (L', \leq')$ is a map of join semilattices. Let $a, b \in L$. If $a \leq b$, then $a \vee b = b$ and, as f preserves finite joins,

$$f(a) \lor' f(b) = f(a \lor b) = f(b),$$

and thus $f(a) \leq' f(b)$. Therefore, f is monotone.

2.2 Lattices.

Question 8. Consider the partial order (L, \sqsubseteq) where

$$L := \mathbb{N} \cup \{\alpha, \beta, \top\},\$$

where \sqsubseteq is the reflexive-transitive closure of \sqsubseteq , where

$$a \sqsubset b \quad \text{iff} \quad \begin{cases} a < b \text{ in } \mathbb{N} \\ & \text{or} \\ a \in \mathbb{N} \text{ and } b \in \{\alpha, \beta\} \\ & \text{or} \\ a \in \{\alpha, \beta\} \text{ and } b = \top. \end{cases}$$

Show that (L, \sqsubseteq) is a join semilattice but is not a lattice.

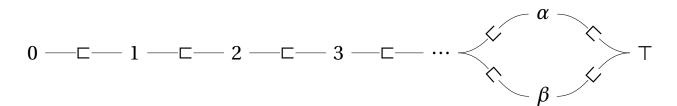


Figure 1 | Hasse diagram of (L, \sqsubseteq) from question 8

Note: Hasse diagrams are usually read bottom-to-top, but this one is drawn left-to-right for convenience.

The relation \sqsubseteq is a partial order. Reflexivity and transitivity is true by definition of \sqsubseteq as the reflexive and transitive closure of \sqsubseteq . For antisymmetry, we have that:

 \triangleright for $n, m \in \mathbb{N}$, $n \sqsubseteq m$ iff $n \le m$;

- \triangleright for any $n \in \mathbb{N}$ and $m \in L \setminus \mathbb{N}$, we have $n \sqsubseteq m$ and $m \not\sqsubseteq n$;
- $\triangleright \alpha \sqsubseteq \top, \beta \sqsubseteq \top, \top \not\sqsubseteq \alpha, \top \not\sqsubseteq \beta, \alpha \not\sqsubseteq \beta \text{ and } \beta \not\sqsubseteq \alpha;$

(this can be shown by induction on the relation \sqsubseteq).

We have that 0 is the least element in (L, \sqsubseteq) : we have that $0 \sqsubseteq a$ for all $a \in L$. For $a, b \in L$, we can define $a \lor b$ as:

- ightharpoonup if $a,b\in\mathbb{N}$, let $a\vee b\coloneqq\min_{\leq_{\mathbb{N}}}(a,b)$;
- \triangleright if $a \in \mathbb{N}$ and $b \in L \setminus \mathbb{N}$, let $a \vee b$, $b \vee a := b$;
- \triangleright otherwise let $\alpha \lor \beta := \top$, $a \land a := a$, $a \land \top$, $\top \land a := \top$ for $a \in \{\alpha, \beta, \top\}$.

Using the previous results on \sqsubseteq , we have that $- \lor - really$ is a join.

This concludes the proof that (L, \sqsubseteq) is a join semilattice.

We also have that (L, \sqsubseteq) is not a lattice. Suppose it is a lattice, and consider the element $a := \alpha \land \beta$. Necessarily, we have that $a \in \mathbb{N}$ (if $a = \alpha$ then we would have $\alpha \sqsubseteq \beta$, which is false). As $a = \alpha \land \beta$ and $a + 1 \sqsubseteq \alpha$, β we have, by definition of meet, that $a + 1 \sqsubseteq a$, thus $a + 1 \le a$ (since $a, a + 1 \in \mathbb{N}$) which is **absurd**. We can conclude that (L, \sqsubseteq) is not a lattice.

Question 9. Consider a set L equipped with two binary operations $\land, \lor : L \times L \to L$ and two constants $\top, \bot \in L$. Assume that (L, \land, \top) and (L, \lor, \bot) are commutative monoids in which every element is idempotent. Show that the following are equivalent.

- 1. The partial order \leq_{\vee} induced by (L, \vee, \perp) coincides with the partial order \leq_{\wedge} induces by (L, \wedge, \top) .
- 2. $(L, \vee, \wedge, \perp, \top)$ satisfies the two following **absorptive laws**:

$$\forall a, b \in L, \quad a \lor (a \land b) = a$$
 (abs₁)

$$\forall a, b \in L, \quad a \land (a \lor b) = a$$
 (abs₂)

- Let us show that 1 implies 2. Let $a, b \in L$. We have that $a \land b \leq_{\wedge} a$ and, assuming \leq_{\wedge} and \leq_{\vee} coincide, $a \land b \leq_{\vee} a$, thus $a \lor (a \land b) = a$, i.e. (abs₂) holds. Similarly, $a \leq_{\vee} a \lor b$ thus $a \leq_{\wedge} a \lor b$, so $(a \land b) \lor a = a$ holds, and we can recover (abs₁) by using commutativity.
- Let us show that 2 implies 1.

- Suppose $b \le A$, then $b \land a = b$. By (abs₁) and commutativity, we have $b \lor a = (b \land a) \lor a = a$, thus $b \le a$.
- Suppose $b \leq_{\lor} a$, then $b \lor a = a$. By (abs₂), we have

$$b \wedge a = b \wedge (b \vee a) = b$$
,

thus $b \leq_{\wedge} a$.

Thus the two order coincide.

Question 10. Show that the partial order $(\mathfrak{L}(LML), \leq)$ is a lattice.

We have shown that $(\mathfrak{L}(LML), \leq)$ has a greatest element \top , a least element \bot , binary meets given by $- \land -$ and binary joins given by $- \lor -$ (question 6). Thus it has all finite meets and finite joins (as seen in question 3), *i.e.* $(\mathfrak{L}(LML), \leq)$ is a lattice.

Question 11. Show that the function

$$\bigcirc: \mathfrak{L}(\mathsf{LML}) \longrightarrow \mathfrak{L}(\mathsf{LML})$$
$$\phi \longmapsto \bigcirc \phi$$

is a morphism of lattices.

We know \bigcirc is a map of meet iff $\bigcirc \top = \top$ and $\bigcirc (\phi \land \psi) = \bigcirc \phi \land \bigcirc \psi$. Both are true as,

Very similarly, \bigcirc is a map of joins iff $\bigcirc \bot = \bot$ and $\bigcirc (\phi \lor \psi) = \bigcirc \phi \lor \bigcirc \psi$. One can show that both equalities hold by applying $\llbracket - \rrbracket$ and showing the equality of the sets like above.

Thus \bigcirc : $(\mathfrak{L}(LML), \leq) \rightarrow (\mathfrak{L}(LML), \leq)$ is a morphism of lattices.

2.3 Distributive Lattices.

Question 12. Show that the following two **distributive laws** are equivalent in a lattice $(L, \vee, \wedge, \perp, \top)$:

$$\forall a, b, c \in L, \quad a \land (b \lor c) = (a \land b) \lor (a \land c)$$
 (dist₁)

$$\forall a, b, c \in L, \quad a \lor (b \land c) = (a \lor b) \land (a \lor c)$$
 (dist₂)

Suppose (dist₁) holds and let us show (dist₂) is true for $a, b, c \in L$:

$$(a \lor b) \land (a \lor c) = ((a \lor b) \land a) \lor ((a \lor b) \land c)$$
 by (dist₁)

$$= a \lor ((a \lor b) \land c)$$
 by (abs₂)

$$= a \lor (a \land b) \lor (b \land c)$$
 by (dist₁)

$$= a \lor (b \land c)$$
 by (abs₁).

To prove that $(dist_1)$ holds when $(dist_2)$ is true, we can apply the previous result to the lattice $(L, \leq)^{op} = (L, \geq)$. This gives exactly the implication " $(dist_2)$ implies $(dist_1)$," as wanted.

Thus, the two distributive laws (dist₁) and (dist₂) are equivalent.

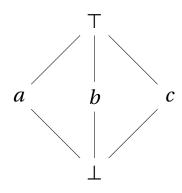
Question 13. Show that the lattice $(\mathfrak{L}(LML), \leq)$ is distributive.

Let $\phi, \psi, \vartheta \in \mathfrak{L}(LML)$. We have that

$$\llbracket \phi \wedge (\psi \vee \vartheta) \rrbracket = \llbracket \phi \rrbracket \cap (\llbracket \psi \rrbracket \cup \llbracket \vartheta \rrbracket) = (\llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket) \cup (\llbracket \phi \rrbracket \cap \llbracket \vartheta \rrbracket) = \llbracket (\phi \wedge \psi) \vee (\phi \wedge \vartheta) \rrbracket,$$

thus
$$\phi \land (\psi \lor \vartheta) = (\phi \land \psi) \lor (\phi \land \vartheta)$$
.

Question 14. Consider the following lattice M_3 :



(i.e. $\bot \le a, b, c \le \top$ with a, b, c incomparable). Show that M_3 is not distributive.

Suppose M_3 is distributive. As a, b, c are incomparable, we have that

$$a \wedge b = a \wedge c = \bot$$
 and $b \vee c = \top$,

and thus,

$$a = a \wedge \top = a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) = \bot \vee \bot = \bot$$

which is *absurd*. Thus M₃ is not distributive.

2.4 Booleans algebras.

Question 15. Show that if (L, \leq) is a distributive lattice then $a \in L$ has at most one complement.

Consider $c, c' \in L$ two complements of $a \in L$. Then, we have that

$$c = c \wedge \top = c \wedge (a \vee c') \stackrel{(\text{dist}_1)}{=} (c \wedge a) \vee (c \wedge c') = \bot \vee (c \wedge c') = c \wedge c',$$

and,

$$c' = c' \land \top = c' \land (a \lor c) \stackrel{(\text{dist}_1)}{=} (c' \land a) \lor (c' \land c) = \bot \lor (c' \land c) = c' \land c.$$

We can conclude that c = c' by commutativity of meets.

Question 16. Show that $(\mathfrak{L}(LML), \leq)$ is a Boolean algebra.

Let us show that $\neg \phi$ is a complement for $\phi \in \mathfrak{L}(\mathsf{LML})$. We have to check that $\phi \land \neg \phi = \bot$ and $\phi \lor \neg \phi = \top$ hold. Both equalities can be easily checked with interpretations:

$$\llbracket \phi \wedge \neg \phi \rrbracket = \llbracket \phi \rrbracket \cap \llbracket \phi \rrbracket^{\complement} = \emptyset = \llbracket \bot \rrbracket,$$

and

$$\llbracket \phi \vee \neg \phi \rrbracket = \llbracket \phi \rrbracket \cup \llbracket \phi \rrbracket^{\complement} = (\mathbf{2}^{AP})^{\omega} = \llbracket \top \rrbracket.$$

Thus, $\neg \phi$ is *the* complement of ϕ in $(\mathfrak{L}(LML), \leq)$, which is, as a consequence, a Boolean algebra.

Question 17. Show that the following **De Morgan Laws** hold in every Boolean algebra $(B, \vee, \wedge, \perp, \top)$:

$$a \wedge b = \neg(\neg a \vee \neg b)$$
 $a \vee b = \neg(\neg a \wedge \neg b)$ $a = \neg \neg a$.

We start by showing that $\neg a \lor \neg b$ is a complement to $(a \land b)$:

$$(a \land b) \land (\neg a \lor \neg b) = (a \land b \land \neg b) \lor (a \land b \land \neg a) = \bot \lor \bot = \bot$$
$$(a \land b) \lor (\neg a \lor \neg b) = (a \lor \neg a \lor \neg b) \land (b \lor \neg a \lor \neg b) = \top \land \top = \top,$$

by using the Boolean algebra laws. Thus $a \wedge b = \neg(\neg a \vee \neg b)$.

For $a \lor b = \neg(\neg a \land \neg b)$, we proceed by duality by applying the previous result to the Boolean algebra $(B, \land, \lor, \top, \bot)$, as a complement for a in (B, \ge) is exactly a complement for a in (B, \le) .

We can easily check that $\neg \top = \bot$, and then

$$a = a \land \top = \neg(\neg a \lor \neg \top) = \neg(\neg a \lor \bot) = \neg \neg a.$$

Question 18. Show that if f is a map of Boolean algebras from (B, \leq) to (B', \leq') then f preserves complements.

We have that

$$\bot' = f(\bot) = f(a \land \neg a) = f(a) \land' f(\neg a),$$

and

$$\top = f(\top) = f(a \vee \neg a) = f(a) \vee' f(\neg a),$$

thus $f(\neg a)$ is a complement of f(a) and, by unicity, $f(\neg a) = \neg f(a)$. We can conclude that a map of Boolean algebras preserves complements.

3 Representation of Boolean Algebras.

3.1 Filters and Ultrafilters.

Question 19. Let (L, \wedge, \top) be a meet semilattice. Show that $\mathscr{F} \subseteq L$ is a filter iff

- 1. \mathcal{F} is upward-closed and,
- 2. $T \in \mathcal{F}$ and,
- 3. $a \land b \in \mathcal{F}$ whenever $a \in \mathcal{F}$ and $b \in \mathcal{F}$.

Let $\mathcal{F} \subseteq L$ be upward-closed.

We only need to show that \mathscr{F} is codirected if, and only if, $\top \in \mathscr{F}$ and $a \land b \in \mathscr{F}$ whenever a and b are in \mathscr{F} .

- ▶ If \mathscr{F} is codirected then there exists $a \in \mathscr{F}$ and, as $a \leq \top$, we have that $\top \in \mathscr{F}$. Also, for $a, b \in \mathscr{F}$, there exists $c \in \mathscr{F}$ such that $c \leq a$ and $c \leq b$ therefore, as $c \leq a \land b$, we have that $a \land b \in \mathscr{F}$.
- Suppose $\top \in \mathscr{F}$ and that \mathscr{F} is stable under the meet operator. Let us show that \mathscr{F} is codirected. First, $\top \in \mathscr{F}$ so \mathscr{F} is non-empty. Second, for any two $a, b \in \mathscr{F}$ then $c := a \land b \in \mathscr{F}$ satisfies that $c \le a, b$.

Question 20. Let (L, \leq) be a lattice. Show that if $F \subseteq L$ has the finite intersection property, then

$$Filt(F) := \{ a \in L \mid a \ge \bigwedge S \text{ for some finite } S \subseteq F \}$$

is a proper filter on (L, \leq) .

Suppose $F \subseteq L$ has the finite intersection property.

- ▶ First, $\top \in \text{Filt}(F)$ as $\top \ge \bigwedge S$ for, in particular, $S = \emptyset \subseteq F$.
- Second, if $a, b \in Filt(F)$ with $a \ge \bigwedge S_1$, $b \ge \bigwedge S_2$ and finite $S_1, S_2 \subseteq F$, then $a \land b \ge (\bigwedge S_1) \land (\bigwedge S_2) = \bigwedge (S_1 \cup S_2)$, thus $a \land b \in Filt(F)$ (as $S_1 \cup S_2$ is a finite subset of F).
- ▶ Third, if $a \in Filt(F)$ (with $a \ge \bigwedge S$ and a finite $S \subseteq F$) and $a \le b$, then $b \ge \bigwedge S$ thus $b \in Filt(F)$.

We have that Filt(F) is a filter.

Suppose $\bot \in \operatorname{Filt}(F)$, then there exists some finite $S \subseteq F$ such that $\bot \ge \bigwedge S$. Also, $\bot \le \bigwedge S$, so $\bigwedge S = \bot$. However, this is absurd by the finite intersection property for F. Thus $\bot \notin \operatorname{Filt}(F)$ and we can conclude that $\operatorname{Filt}(F)$ is a proper filter. **Question*** **21.** Let \mathscr{F} be a filter on a distributive lattice. Show that if \mathscr{F} is an ultrafilter then \mathscr{F} is prime.

Lemma 2. Any proper filter has the finite intersection property.

Proof. Consider some finite subset $S \subseteq \mathcal{F}$ where \mathcal{F} is a proper filter. Then, by induction on the size of S, we can show that $\bigwedge S \in \mathcal{F}$, and thus $\bigwedge S \neq \bot$, as $\bot \notin \mathcal{F}$.

As \mathscr{F} is an ultrafilter, \mathscr{F} is a proper filter and thus $\bot \notin \mathscr{F}$. Now, let us show that if $a \lor b$ is in \mathscr{F} then either a or b is in \mathscr{F} . Consider three cases.

- Either $\mathscr{F} \cup \{a\}$ has the finite intersection property, and thus Filt($\mathscr{F} \cup \{a\}$) is a proper filter and $\mathscr{F} \subseteq \text{Filt}(\mathscr{F} \cup \{a\})$ (simply take $S = \{f\}$ for every $f \in \mathscr{F}$ in the definition of Filt(-)), thus $a \in \mathscr{F} = \text{Filt}(\mathscr{F} \cup \{a\})$ since \mathscr{F} is an ultrafilter.
- ► Either $\mathcal{F} \cup \{b\}$ has the finite intersection property, and we can show $b \in \mathcal{F}$ very similarly.
- Either $\mathscr{F} \cup \{a\}$ and $\mathscr{F} \cup \{b\}$ do not have the finite intersection property, *i.e.* there exists some finite $S \subseteq \mathscr{F} \cup \{a\}$ and $S' \subseteq \mathscr{F} \cup \{b\}$ such that $\bigwedge S = \bigwedge S' = \bot$. Necessarily $a \in S$ and $b \in S'$ (if $S \subseteq \mathscr{F}$ then with the above lemma, we immediately have that $\bigwedge S \neq \bot$, and similarly for S'). Then, writing $U := \bigwedge (S \setminus \{a\})$ and $V := \bigwedge (S' \setminus \{b\})$, we have

```
(a \lor b) \land (U \land V)
= (a \land (U \land V)) \lor (b \land (U \land V)) by distributivity, commutativity
= (V \land \bot) \lor (U \land \bot) as a \land U = \land S = \bot
= \bot \lor \bot
= \bot.
```

However, $a \lor b$, U and V are in \mathscr{F} thus so is $(a \lor b) \land U \land V = \bot \in \mathscr{F}$. This is absurd as \mathscr{F} is a proper filter.

Question 22. Let (B, \leq) be a Boolean algebra and let $\mathscr{F} \subseteq B$ be a filter. Show that the following are equivalent:

- F is an ultrafilter;
- 2. F is prime;

3. for each $a \in B$, we have $a \in \mathcal{F}$ iff $\neg a \notin \mathcal{F}$.

By question 21, we have that 1 implies 2.

To prove that 2 implies 3, consider some $a \in B$: we have $a \vee \neg a = \top \in \mathcal{F}$, so either $a \in \mathcal{F}$ or $\neg a \in \mathcal{F}$ (\star). If $a \in \mathcal{F}$ then $\neg a \notin \mathcal{F}$ since, if $\neg a \in \mathcal{F}$ then $a \wedge \neg a = \bot \in \mathcal{F}$, a contradiction since \mathcal{F} is supposed prime. On the other hand, if $\neg a \notin \mathcal{F}$ then necessarily $a \in \mathcal{F}$ by (\star).

To prove 3 implies 1, consider some proper filter $\mathcal{H} \supseteq \mathcal{F}$, then there exists some $a \in \mathcal{H} \setminus \mathcal{F}$, and so $\neg a \in \mathcal{F} \subseteq \mathcal{H}$ (applying 3 to $\neg a$ with $\neg \neg a = a$). Thus $a, \neg a \in \mathcal{H}$ and so $a \land \neg a = \bot \in \mathcal{H}$, a contradiction since \mathcal{H} is a proper filter.

Question 23. Let (A, \leq) be a partial order and consider some $\mathscr{F} \subseteq A$.

- 1. Show that \mathscr{F} is upward-closed if and only if $\chi_{\mathscr{F}}$ is monotone.
- 2. Assume that A is a meet semilattice. Show that \mathscr{F} is a filter if and only if $\chi_{\mathscr{F}}$: $A \to \mathbf{2}$ is a morphism of meet semilattices.
- 3. Assume that A is a lattice. Show that \mathscr{F} is a prime filter if and only if $\chi_{\mathscr{F}}: A \to \mathbf{2}$ is a morphism of lattices.

In the following subquestions, we will implicitly use the results when from the previous subquestions.

1. Suppose $\chi_{\mathscr{F}}$ monotone. Let us show that \mathscr{F} is upward-closed. Consider $a \leq b$ with $a \in \mathscr{F}$, then $1 = \chi_{\mathscr{F}}(a) \leq \chi_{\mathscr{F}}(b)$, thus $\chi_{\mathscr{F}}(b) = 1$ and so $b \in \mathscr{F}$.

Conversely suppose \mathscr{F} is upward-closed, let us show $\chi_{\mathscr{F}}$ is monotone. Consider $a \leq b$.

- ▶ If $a \notin \mathcal{F}$ then $0 = \chi_{\mathcal{F}}(a) \le \chi_{\mathcal{F}}(b)$ is true.
- ▶ If $a \in \mathcal{F}$ then $b \in \mathcal{F}$ and $1 = \chi_{\mathcal{F}}(a) \le \chi_{\mathcal{F}}(b) = 1$.
- **2.** Suppose $\chi_{\mathscr{F}}$ is a morphism of meet semilattices. Let us show that \mathscr{F} is a filter. Take $a, b \in \mathscr{F}$, then $\chi_{\mathscr{F}}(a \wedge b) = \chi_{\mathscr{F}}(a) \wedge \chi_{\mathscr{F}}(b) = 1 \wedge 1 = 1$ thus $a \wedge b \in \mathscr{F}$. Also, $\chi_{\mathscr{F}}(\top) = \top_2 = 1$, thus $\top \in \mathscr{F}$.

Conversely suppose \mathscr{F} is a filter, then $\chi_{\mathscr{F}}(\top) = \top_2 = 1$ as $\top \in \mathscr{F}$. And, for $a, b \in L$,

- ightharpoonup if $a,b\in \mathscr{F}$ then $1=\chi_{\mathscr{F}}(a\wedge b)=\chi_{\mathscr{F}}(a)\wedge\chi_{\mathscr{F}}(b)=1\wedge 1;$
- ▶ if $a \notin \mathcal{F}$ then $a \land b \notin \mathcal{F}$ (if $a \land b \in \mathcal{F}$, then $a \land b \leq a$ would imply that $a \in \mathcal{F}$), thus $0 = \chi_{\mathcal{F}}(a \land b) = \chi_{\mathcal{F}}(a) \land \chi_{\mathcal{F}}(b) = 0 \land \chi_{\mathcal{F}}(b)$;
- \triangleright similarly if $b \notin \mathcal{F}$.
- **3.** Suppose $\chi_{\mathscr{F}}$ is a morphism of lattices. Let us show that \mathscr{F} is a proper filter. As $\chi_{\mathscr{F}}(\bot) = \bot_2 = 0$, then $\bot \notin \mathscr{F}$. If $a \lor b \in \mathscr{F}$, then

$$1 = \chi_{\mathscr{F}}(a \vee b) = \chi_{\mathscr{F}}(a) \vee \chi_{\mathscr{F}}(b),$$

thus necessarily $\chi_{\mathscr{F}}(a) = 1$ or $\chi_{\mathscr{F}}(b) = 1$ (if $\chi_{\mathscr{F}}(a) = \chi_{\mathscr{F}}(b) = 0$ then $\chi_{\mathscr{F}}(a \vee b) = 0$ a contradiction), and so either $a \in \mathscr{F}$ or $b \in \mathscr{F}$.

Conversely suppose \mathscr{F} is a proper filter. Then $\chi_{\mathscr{F}}(\bot) = 0 = \bot_2$ as $\bot \notin \mathscr{F}$. Take $a, b \in L$:

- ▶ if $a, b \notin \mathcal{F}$ then $0 = \chi_{\mathcal{F}}(a \lor b) = \chi_{\mathcal{F}}(a) \lor \chi_{\mathcal{F}}(b) = 0 \lor 0$ (if $a \lor b \in \mathcal{F}$ then either $a \in \mathcal{F}$ or $b \in \mathcal{F}$);
- ▶ if $a \in \mathcal{F}$ then $a \le a \lor b$ implies $a \lor b \in \mathcal{F}$ and so $1 = \chi_{\mathcal{F}}(a \lor b) = \chi_{\mathcal{F}}(a) \lor \chi_{\mathcal{F}}(b) = 1 \lor \chi_{\mathcal{F}}(b)$;

 \triangleright similarly if $b \in \mathcal{F}$.

In these subquestions, we also proved the following result:

Lemma 3. For $a, b \in L$, and $\mathscr{F} \subseteq L$,

- \triangleright if \mathscr{F} is a filter, then $a \land b \in \mathscr{F}$ iff $a, b \in \mathscr{F}$;
- \triangleright if \mathscr{F} is a prime filter, then $a \lor b \notin \mathscr{F}$ iff $a, b \notin \mathscr{F}$.

3.2 The Spectrum of a Boolean Algebra.

Question 24. Let (B, \leq) be a Boolean algebra. Show that we have:

$$ext(a \land b) = ext(a) \cap ext(b)$$

$$ext(a \lor b) = ext(a) \cup ext(b)$$

$$ext(\neg a) = \mathbf{Sp}(B) \land ext(a)$$

$$ext(\top) = \mathbf{Sp}(B)$$

$$ext(\bot) = \emptyset.$$

Let $\mathscr{F} \in \mathbf{Sp}(B)$. We have that :

$$\mathscr{F} \in \operatorname{ext}(a \wedge b) \iff a \wedge b \in \mathscr{F} \iff a, b \in \mathscr{F} \iff \mathscr{F} \in \operatorname{ext}(a) \cap \operatorname{ext}(b);$$

 $\mathscr{F} \notin \operatorname{ext}(a \vee b) \iff a \vee b \notin \mathscr{F} \iff a, b \notin \mathscr{F} \iff \mathscr{F} \notin \operatorname{ext}(a) \cup \operatorname{ext}(b).$

If $\mathscr{F} \notin \operatorname{ext}(\top)$ then $\top \notin \mathscr{F}$ which is absurd. If $\mathscr{F} \in \operatorname{ext}(\bot)$ then $\bot \in \mathscr{F}$ which is impossible since \mathscr{F} is a proper filter. A map $\operatorname{ext} : (B, \le) \to (\wp(\operatorname{\mathbf{Sp}}(B)), \subseteq)$ of Boolean algebras automatically preserves complements, thus $\operatorname{ext}(\neg a) = \operatorname{\mathbf{Sp}}(B) \setminus \operatorname{ext}(a)$.

Question 25. Show that the spectrum $(\mathbf{Sp}(B), \Omega(\mathbf{Sp}(B)))$ of a Boolean algebra B is T_0 and zero-dimensional.

Let us show that $\mathbf{Sp}(B)$ is T_0 . Take $F \neq G \in \mathbf{Sp}(B)$, and $a \in F \triangle G$ where $-\triangle -$ is the symmetric difference of two sets. Without loss of generality, assume $a \in F$ (and thus $a \notin G$), then $F \in \mathrm{ext}(a)$ and $G \notin \mathrm{ext}(a)$.

Let us show that $\mathbf{Sp}(B)$ is zero-dimensional. Every $\mathsf{ext}(a) \in \mathcal{B}$ is a clopen, as it is obviously open, and $\mathsf{ext}(a) = \mathsf{ext}(\neg \neg a) = \mathbf{Sp}(B) \setminus \mathsf{ext}(\neg a)$, thus it is also closed. So, the basis \mathcal{B} only contains clopens.

Question* **26.** Show that the spectrum $(\mathbf{Sp}(B), \Omega(\mathbf{Sp}(B)))$ of a Boolean algebra B is compact.

Note. In the following questions, we will only deal with open covers, so a "cover" will always be an open cover. Similarly a "subcover" will always refer to an open subcover.

Suppose $\mathbf{Sp}(B) = \bigcup_{a \in A} \mathrm{ext}(a)$ (we can always do that as \mathscr{B} is a basis of the topology on $\mathbf{Sp}(B)$). Assume this cover of $\mathbf{Sp}(B)$ does not admit a finite subcover. Define

$$\mathscr{C} := \{ \neg a \mid a \in A \}.$$

The set \mathscr{C} has the finite intersection property: if S is a finite subset of \mathscr{C} with $\bigwedge S = \bot$, then

$$\perp = \bigwedge_{(\neg a) \in S} (\neg a) \stackrel{(\star)}{=} \neg \Big(\bigvee_{(\neg a) \in S} a \Big),$$

where (\star) is proven by induction with results from question 17, as S is finite. Taking the complement, we have $\top = \bigvee_{(\neg a) \in S} a$, thus

$$\mathbf{Sp}(B) = \mathsf{ext}(\top) = \mathsf{ext}\Big(\bigvee_{(\neg a) \in S} a\Big) = \bigcup_{(\neg a) \in S} \mathsf{ext}(a)$$

is a finite subcover of $\bigcup_{a \in A} \operatorname{ext}(a)$, which is absurd. Thus $\mathscr C$ has the finite intersection property. With the Ultrafilter Lemma, we get an ultrafilter $\mathscr F \supseteq \mathscr C$. For all $a \in A$, we have $\neg a \in \mathscr C \subseteq \mathscr F$ thus $a \notin \mathscr F$ (question 22), and so $\mathscr F \notin \operatorname{ext}(a)$. So, we have $\mathscr F \notin \operatorname{Sp}(B) = \bigcup_{a \in A} \operatorname{ext}(a)$, a contradiction. Thus, the cover $\operatorname{Sp}(B) = \bigcup_{a \in A} \operatorname{ext}(a)$ admits a finite subcover. We can conclude that $\operatorname{Sp}(B)$ is compact.

Question 27. Let (X,Ω) be a topological space. Show that (X,Ω) is compact if and only if we have $\bigcap \mathscr{F} \neq \emptyset$ for every family of closed sets \mathscr{F} which has the finite intersection property (w.r.t. the inclusion (partial) order on closed sets).

For any family $\mathcal{G} \subseteq \wp(X)$, we will write $\bar{\mathcal{G}} := \{X \setminus G \mid G \in \mathcal{G}\}$. We have that \mathcal{G} is a family of closed sets iff $\bar{\mathcal{G}}$ is a family of open sets (*i.e.* $\bar{\mathcal{G}} \subseteq \Omega$). Also, we have that $\bar{\bar{\mathcal{G}}} = \mathcal{G}$.

Firstly, suppose (X,Ω) to be compact, and let $\mathscr{F} \subseteq \wp(X)$ be a family of closed sets with the finite intersection property. Suppose $\bigcap \mathscr{F} = \emptyset$. Then, $\bigcup \bar{\mathscr{F}} = X$ and, as X is compact, there exists some finite $\mathscr{G} \subseteq \bar{\mathscr{F}}$ such that $\bigcup \mathscr{G} = X$. Thus we get that $\bigcap \bar{\mathscr{G}} = \emptyset$, a contradiction with the finite intersection property, as $\bar{\mathscr{G}}$ is finite. We conclude that $\bigcap \mathscr{F} \neq \emptyset$.

Secondly, suppose $X = \bigcup \mathscr{F}$ with $\mathscr{F} \subseteq \Omega$ is an open cover of X. Assume that there are no finite subcovers (\star) . Then, by complement, we have $\cap \bar{\mathscr{F}} = \emptyset$

 $(\star\star)$. But, $\bar{\mathscr{F}}$ is a family of closed sets and $\bar{\mathscr{F}}$ has the finite intersection property: if there exists some finite $\mathscr{G}\subseteq\bar{\mathscr{F}}$ with $\cap\mathscr{G}=\emptyset$ then $\cup\bar{\mathscr{G}}=X$ is a finite cover of X with open sets, which is absurd by (\star) . So we conclude that $\bar{\mathscr{F}}$ has the finite intersection property, and we can apply the hypothesis to get that $\cap\bar{\mathscr{F}}\neq\emptyset$, a contradiction with $(\star\star)$. Thus a finite subcover exists, and we finally have that X is compact.

Question* 28. Given a Stone space (X, Ω) , consider the function

$$\eta: X \longrightarrow \wp(\mathbf{K}\Omega)$$

$$x \longmapsto \{U \in \mathbf{K}\Omega \mid x \in U\}.$$

Show that η is a continuous bijection from X to $\mathbf{Sp}(\mathbf{K}\Omega)$.

We will proceed in four parts.

Firstly, let us show that $\eta(x) \in \mathbf{Sp}(\mathbf{K}\Omega)$, *i.e.* $\eta(x)$ is a prime filter on $\mathbf{K}\Omega$.

- Suppose *A* ∈ $\eta(x)$ and *A* ⊆ *B* ∈ **K**Ω, then $x \in A \subseteq B$, we have $x \in B$ and so $B \in \eta(X)$.
- \triangleright We have that $X \in \eta(x)$ as $x \in X$ and X is a clopen.
- Suppose $A, B \in \eta(x)$ then $x \in A$ and $x \in B$, so $x \in A \cap B$ and thus $A \cap B \in \eta(x)$.

Therefore $\eta(x)$ is a filter on **K** Ω .

- Suppose $\perp_{\mathbf{K}\Omega} = \emptyset \in \eta(x)$, then $x \in \emptyset$, which is absurd, so $\eta(x)$ is a proper filter.
- Suppose $A \cup B \in \eta(x)$, then $x \in A \cup B$ so either $x \in A$ or $x \in B$, and thus either $A \in \eta(x)$ or $B \in \eta(x)$.

We can conclude that $\eta: X \to \mathbf{Sp}(\mathbf{K}\Omega)$.

Secondly, let us show that η is injective. Take $x \neq y$ in X. By T_0 , we have that there exists an open set $U \in \Omega$ with $x \in U$ and $y \notin U$, even if it requires swapping x and y. As (X,Ω) is zero-dimensional, we can write $U = \bigcup_{i \in I} C_i$ where $C_i \in \mathbb{K}\Omega$. Let $C \in \{C_i \mid i \in I\} \subseteq \mathbb{K}\Omega$ such that $x \in C_i$. We also have that $y \notin C$, thus $C \in \eta(x)$ and $C \notin \eta(y)$, so $\eta(x) \neq \eta(y)$.

Thirdly let us show that η is surjective. Take $\mathscr{F} \in \operatorname{Sp}(\mathbf{K}\Omega)$. Then, from question 27 (as X is, by definition, compact and \mathscr{F} is a set of closed sets, with the finite intersection property), we have that $\bigcap \mathscr{F} \neq \emptyset$. Take $x \in \bigcap \mathscr{F} \neq \emptyset$. For every $U \in \mathscr{F}$, $x \in U$ so $U \in \eta(x)$ and thus $\mathscr{F} \subseteq \eta(x)$. Conversely suppose $V \in \mathbf{K}\Omega$ such that $x \in V$ and $V \notin \mathscr{F}$, then $X \setminus V \in \mathscr{F}$ by question 22(3), and so $x \in \bigcap \mathscr{F} \subseteq X \setminus V$ and $x \notin X \setminus V$, a contradiction. We can thus conclude $\mathscr{F} = \eta(x)$, and so η is surjective.

Finally, let us show that η is continuous. To show that $\eta^{\bullet}(V)$ is open for every $V \in \Omega(\mathbf{Sp}(\mathbf{K}\Omega))$, it suffices to consider $V \in \mathcal{B}$ as η^{\bullet} commutes with arbitrary unions. Let $A \in \mathbf{K}\Omega$, and let us show that $\eta^{\bullet}(\text{ext}(A))$ is open in X:

$$\eta^{\bullet}(\text{ext}(A)) = \{x \in X \mid \eta(x) \in \text{ext}(A)\} = \{x \in X \mid \eta(x) \ni A\} = \{x \in X \mid x \in A\},\$$

which exactly is $A \in \mathbf{K}\Omega \subseteq \Omega$.

Thus we can conclude that η is a continuous bijection from X to **Sp**(**K** Ω).

Question* 29. Assume $(X, \Omega X)$ and $(Y, \Omega Y)$ are compact Hausdorff spaces. Show that if $f:(X,\Omega X)\to (Y,\Omega Y)$ is a continuous bijection, then f is an homeomorphism.

We will us the following lemma from the course:

Lemma 4. If $(X, \Omega X)$ is a compact Hausdorff space, and $C \subseteq X$, then C is compact iff C is closed.

We also need the following lemma:

Lemma 5. Let $(X, \Omega X)$ and $(Y, \Omega Y)$ be arbitrary topological spaces. If K is compact in $(X, \Omega X)$ then, for every continuous $f : (X, \Omega X) \to (Y, \Omega Y)$, the set f(K) is compact in $(Y, \Omega Y)$.

Proof. Define $L := f_!(K)$. Consider a cover $L \subseteq \bigcup_{i \in I} V_i$ of L. Then, $f^{\bullet}(L) \subseteq f^{\bullet}(\bigcup_{i \in I} V_i) = \bigcup_{i \in I} f^{\bullet}(V_i)$, so we obtain an open (as f is continuous) cover of $f^{\bullet}(L)$. As $K \subseteq f^{\bullet}(K) \subseteq \bigcup_{i \in I} f^{\bullet}(V_i)$ and K is compact, then there exists a finite set $J \subseteq I$ such that $K \subseteq \bigcup_{i \in J} f^{\bullet}(V_i)$. With the direct image $f_!$, we have that $f_!(K) = L \subseteq \bigcup_{i \in I} f_!(f^{\bullet}(V_i)) = \bigcup_{i \in I} V_i$ is a finite subcover of $L = f_!(K)$.

-20/22-

We simply have to show that $g := f^{-1} : Y \to X$ is continuous. We have that $g_! = f^{\bullet}$ and $f_! = g^{\bullet}$ as f and g are inverses of each other. Consider an arbitrary open set $U \in \Omega X$. It suffices to show that $g^{\bullet}(U) = f_!(U)$ is open in $(Y, \Omega Y)$. With the two previous lemmas, we have that $f_!(C)$ is a closed set in $(Y, \Omega Y)$, for every closed C in $(X, \Omega X)$. So,

$$f_!(X \setminus U) = g^{\bullet}(X \setminus U) = g^{\bullet}(X) \setminus g^{\bullet}(U) = Y \setminus f_!(U)$$

is closed in $(Y, \Omega Y)$, thus $f_!(U)$ is open. Thus g is continuous.

We can conclude that f is a homeomorphism.

3.3 On the Ultrafilter Lemma.

Question* 30. Prove the Ultrafilter Lemma (assuming Zorn's Lemma).

Consider some $F \subseteq L$ with the finite intersection property where (L, \leq) is a lattice. Define $P := \{ \mathscr{F} \text{ is a proper filter on } L \mid F \subseteq \mathscr{F} \}$, ordered by set inclusion \subseteq .

Consider a non-empty chain $\mathscr C$ in P. We will show that $\mathscr G := \bigcup \mathscr C$ is a proper filter containing F.

- ▶ Take $a \le b$ with $a \in \mathcal{G}$. Then $a \in \mathcal{F}$ for some $\mathcal{F} \in \mathcal{C}$. As \mathcal{F} is a filter, then $b \in \mathcal{F}$, and so $b \in \mathcal{G}$.
- ightharpoonup We have $op \in \mathscr{G}$ as \mathscr{C} is non-empty, and any element of \mathscr{C} contains op.
- \triangleright We have $F \subseteq \mathcal{G}$ as \mathcal{C} is non-empty, and any element of \mathcal{C} contains F.
- ▶ Take $a, b \in \mathcal{G}$, then $a \in \mathcal{F}_1$ and $b \in \mathcal{F}_2$ for some proper filters $\mathcal{F}_1, \mathcal{F}_2 \in \mathcal{C}$. As \mathcal{C} is a chain, we can assume without loss of generality, that $\mathcal{F}_1 \subseteq \mathcal{F}_2$, thus $a, b \in \mathcal{F}_2$ and so $a \land b \in \mathcal{F}_2 \subseteq \mathcal{G}$.
- ▶ If $\bot \in \mathcal{G}$ then $\bot \in \mathcal{F}$ for some \mathcal{F} in \mathcal{C} , which is absurd as \mathcal{F} is a proper filter.

Now, we can immediately see that this is an upper bound of \mathscr{C} : if $\mathscr{F} \in \mathscr{C}$ then we have $\mathscr{F} \subseteq \mathscr{G} = \bigcup \mathscr{C}$.

For an empty chain \mathscr{C} , we use $\mathrm{Filt}(F) \in P$ as upper bound (as F has the finite intersection property).

Then, we apply Zorn's lemma to (P,\subseteq) , and get a maximal element $\mathscr{U} \in P$. Let us show that \mathscr{U} is an ultrafilter. Consider \mathscr{H} a proper filter on L such that $\mathscr{H} \supseteq \mathscr{U}$. Then $F \subseteq \mathscr{U} \subseteq \mathscr{H}$ so $\mathscr{H} \in P$. By maximality of \mathscr{U} in P, we have that $\mathscr{U} = \mathscr{H}$.

We can finally conclude that $\mathscr U$ is an ultrafilter containing F, finishing the proof of the Ultrafilter Lemma.

End of Homework.