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1 Linear optimization.

Example 1.1. . A vertex cover in a graph G = (V, E) is a set
of vertices X ⊆ V such that, for every edge xy ∈ E, x ∈ X
or y ∈ X. We will write τ(G) for the minimum size of a
vertex cover of G.

. A matching is a set of disjoint edges. We will denote ν(G)
is the maximum size of a matching.

For the pentagonal graph G4, we have that that ν(G4) = 2 and
τ(G4) = 3.

Computing a vertex cover of minimum size is NP-hard; and,
finding a matching of maximal size is very tricky but polynomial
(Edmond’s theorem). It is obvious that we have ν ≤ τ .

We will consider the fractional relaxation of these problems.

Consider a variable xv for every vertex v and ask that

. ∀uv ∈ E, xu + xv ≥ 1;

. ∀u ∈ V , xu ≥ 0;

such that ∑
v∈V xv is minimal, which we will write τ ∗(G). This

is called the parameter fractional vertex cover. We have that
τ ∗(G4) = 5

2 .

For matching, we put a weight ye for every edge e such that

. ∀v ∈ V , ∑
e3v ye ≤ 1;

. ye ≥ 0,
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such that ∑
e∈E ye is maximized, which we will write ν∗. We have

that ν∗(G4) = 5
2 .

The fact that ν∗(G4) = τ ∗(G4) is a more general fact:

ν ≤ ν∗ = τ ∗ ≤ τ.

Remark 1.1. . The problem of linear programming is in P.
Linear solver programs can be done in polynomial time.
Thus, computing a released solution is possible and useful.

. Duality: Dual fractional parameters are equal, parameters
come by pairs.

Remark 1.2 (Why is linear programming tractable?). . There
is an efficient algorithm called the simplex algorithm, but
it is not in P.

. There is a polynomial algorithm (using ellipsoids) but it is
not useful in practice.

. There is an algorithm which is both in P and efficient using
interaction-point methods.

1.1 The simplex algorithm.
Let (P) be the following linear problem:

(P) : maximize 5x1 + 4x2 + 3x3 with


2x1 + 3x2 + x3 ≤ 5
4x1 + 3x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

.

We can try to increase x1, or x2, or x3 but what’s the next step?
Introduce new variables called slack variables x4, x5, x6 (one for each
constraint).
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We can transform (P) with:

(D0) :


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

.

The problem of maximizing the objectif function of (P) if equivalent
to maximize z under the constraints of the inequalities transformed
into equalities and with x1, . . . x6 ≥ 0.

The problem (D0) is the (initial) dictionary.

To a dictionary, we associate a solution by setting to 0 the non-
basic variables x1, x2, x3 and getting solutions for the basic variables
x4, x5, x6. In our case, we would have x4 = 5, x5 = 11 and x6 = 8, for
an objective of 0.

! If one of these values of the solution (here, 5, 11, 8), would negative,
there would be a problem. We could have an empty domain (this is
the problem of solving the decision problem associated to (P)). We
will see later how to solve this problem.

We can try by hand to increase z. If we try to increase x1, we have that
the highest limitation for x1 is 5

2 (we can see that using x4, x5, x6 ≥ 0
by solving for x1 with x2 = x3 = 0, this constraint is from the one on
x4). We increase it, but. . . what next?

Now, this is the idea of Dantzig: Pivot. We will call x1 the entering
variable and x4 the leaving variable. We will then exchange the role
of x1 and x4 and substitute:

(D1) :


x1 = 5

2 − x4
2 − 3x2

2 − x3
2

x5 = 1 + 2x4 + 5x2

x6 = 1
2 + 3

2x4 − x2
2

z = 25
4 − 5x4

2 − 7x2
2 + x3

2

.

We observe that (D1) is equivalent to (D0) and (P) when x1, . . . , x6 ≥
0. We can now iterate the process, choosing a new entering variable.
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To increase z, we only have one choice: increasing x3. To find the
leaving variable, we have that x3 ≤ 1 with the constraint on x6. We
should then pivot x3 and x6:

(D2)


x1 = 2 − x4 − 2x2 + x6

x5 = 1 + 2x4 + 5x2

x3 = 1 + 3x4 + x2 − 2x6

z = 13 − x4 − 3x2 − x6

.

Now, we have no choice for an entering variable. This means we are
on an optimal solution and the simplex algorithm stops.

The solutions of (D2) with x1, . . . , x6 ≥ 0 are equivalent to (P). This
means that z ≤ 13. The solution associated to (D2) is

s2 = (2
x1

, 0
x2

, 1
x3

, 0
x4

, 1
x5

, 0
x6

).

The optimal for (P) is (2, 0, 1) for an objective of 13.

! The linear problem (D2) contains the certificate that OPT ≤ 13.
In z = 13 − x4 − 3x2 − x6, the variables x4 and x6 are slack and thus
correspond to the constraints

. x4 → 2x1 + 3x2 + x3 ≤ 5 (×1);

. x6 → 3x1 + 4x2 + 2x3 ≤ 8 (×1);

thus, the objective is

obj ≤ 5x1 + 7x2 + 3x3 ≤ 13,

which we obtain by summing the two rows. We get back the original
objective functions. The certificate of optimality is: a non-negative
combination of constraints is larger than the objective function.

Intuition: What are pivots? The simplex moves from every vertex
to another (adjacent) vertex of the polyhedron.

How many steps? Consider a polyhedron P with n vertex and m
facets. The skeleton is the graph obtain from vertices of P and edges
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of P . An upper bound of the number of pivots is the diameter (i.e.
the distance between the furthest vertices) of G.

For the cube, we get that the dimension is 3 with a diameter 3 and
6 facets. For the K4 the complete graph with 4 vertices, we have a
dimension of 3, with 4 facets and we have a diameter of 1.

It is conjectured that the diameter is bounded by the number of facets
minus the dimension (Hirsch conjecture).

If this conjecture is true, we have that there exists a sequence of pivots
with length bounded by n + m − n = m.

This is false but polynomial versions are still open.
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