A perfectly secure symmetric encryption scheme: ONE-TIME PAD

This encryption scheme achieves information-theoric security.

Definition 1 (Symmetric encryption). Let \mathcal{K} be a key space, \mathcal{P} be a plain-text space and let \mathcal{C} be a ciphertext space These three spaces are finite spaces.

A symmetric encryption scheme over $(\mathcal{K}, \mathcal{P}, \mathcal{C})$ is a tuple of three algorithms (KeyGen, Enc, Dec) :

 \triangleright KeyGen provides a sample k of \mathcal{K} ;

 $\triangleright \operatorname{Enc}: \mathcal{K} \times \mathcal{P} \to \mathcal{C};$

 $\triangleright \operatorname{Dec}: \mathcal{K} \times \mathscr{C} \to \mathscr{P}.$

Without loss of generality, we will assume that im Enc = \mathscr{C} . We want to ensure **Correctness**: for any key $k \in \mathscr{K}$ and message $m \in \mathscr{P}$, we have that:

$$Dec(k, Enc(k, m)) = m.$$

The elements m and k are independent random variables and all the elements in \mathcal{K} and \mathcal{P} have non-zero probability.

Remark 1. The algorithm Enc could (and should¹) be probabilistic. However, the algorithm Dec is deterministic.

So far, we did not talk about efficiency of these algorithms.

Definition 2 (Shannon, 1949). A symmetric encryption scheme is said to have *perfect security* whenever, for any \bar{m} and any \bar{c} ,

$$\Pr_{k,m}[m = \bar{m} \mid \operatorname{Enc}_k(m) = \bar{c}] = \Pr_m[m = \bar{m}].$$

The intuition is that knowing the encrypted message tells me *nothing* about the message.

Lemma 1 (Shannon). Given a symmetric encryption scheme (KeyGen, Enc, Dec) has perfect security then $|\mathcal{K}| \ge |\mathcal{P}|$.

Proof. Let $\bar{c} \in \mathscr{C}$ and define

$$\mathcal{S} := \{ \bar{m} \in \mathcal{P} \mid \exists \bar{k} \in \mathcal{K}, \bar{m} = \mathrm{Dec}(\bar{k}, \bar{c}) \}.$$

Let $N := |\mathcal{S}|$. We have that $N \leq |\mathcal{H}|$ as Dec is deterministic. We also have that $N \leq |\mathcal{P}|$ as $\mathcal{S} \subseteq \mathcal{P}$. Finally, assume $N < |\mathcal{P}|$. This means, there exists $\bar{m} \in \mathcal{P}$ such that $\bar{m} \notin \mathcal{S}$. Then,

$$\Pr[m = \bar{m} \mid \operatorname{Enc}_k(m) = \bar{c}] = 0,$$

but by assumption, $\Pr[m=\bar{m}] \neq 0$. So this is not a perfectly secure scheme. We can conclude that

$$N = |\mathcal{P}| \le |\mathcal{K}|.$$

¹If the algorithm is deterministic, if we see two identical ciphers we know that the messages are identical, and this can be seen as a vulnerability of this protocol.

Example 1 (One-Time PAD). Let $\mathcal{K} = \mathcal{C} = \mathcal{P} = \{0,1\}^{\ell}$. Here are the algorithms used:

- \triangleright KeyGen samples from $\mathcal{U}(\{0,1\}^{\ell})$.
- \triangleright Enc(k, m) we compute the XOR $c = m \oplus k$.
- \triangleright Dec(k, m) we compute the XOR $m = c \oplus k$.

Theorem 1. The One-Time PAD is a perfectly-secure symmetric encryption.

Proof. Correctness. We have that

$$Dec(k, Enc(k, m)) = k \oplus k \oplus m = m.$$

Security. We have, by independence of m and k we have that

$$\Pr[m = \bar{m} \mid \operatorname{Enc}(k, m) = \bar{c}] = \Pr[m = \bar{m} \mid k \oplus m = \bar{c}]$$
$$= \Pr[m = \bar{m}].$$

Remark 2. This example is not practical:

- ▶ keys need to be larger than the message;
- \triangleright you cannot encrypt twice: for example, $c_1 = m_1 \oplus k$ and $c_2 = m_2 \oplus k$, then we have $c_1 \oplus c_2 = m_1 \oplus m_2$.

This last part is why that protocol is called a *One-Time secure* encryption.

We want to be able to encrypt arbitrarily long messages! We will have to make a trade-off and we choose to not care about *perfect* security. Why? In real life, we don't care about proving that something is proven to be absolutely infeasible, we only want to believe it is

Hugo Salou – *M1 ens lyon*

infeasible in practice.

Computational complexity is sufficient in practice.

Let us be more precise.

Definition 3. Let \mathfrak{D}_0 and \mathfrak{D}_1 be two distributions over $\{0,1\}^n$.

An algorithm $\mathcal{A}: \{0,1\}^n \to \{0,1\}$ is called a distinguisher between \mathfrak{D}_0 and \mathfrak{D}_1 . We define its distinguishing advantage as:

$$\mathrm{Adv}_{\mathscr{A}} := \Big|\underbrace{\Pr_{\substack{x \leftarrow \mathfrak{D}_1}} [\mathscr{A}(X) = 1]}_{\text{probability of being right}} - \underbrace{\Pr_{\substack{x \leftarrow \mathfrak{D}_0}} [\mathscr{A}(X) = 1]}_{\text{probability of being mistaken}} \Big|.$$

We say that \mathfrak{D}_0 and \mathfrak{D}_1 are computationally indistinguishable if for any efficient distinguisher \mathcal{A} its advantage $\operatorname{Adv}_{\mathcal{A}}$ is small.

This definition is not very formal yet, we have not defined "efficient" and "small." This can be formalized by introducing a parameter $\lambda \in \mathbb{N}$ called the *security parameter*.

Definition 4. Let $(\mathfrak{D}_{0,\lambda})_{\lambda\in\mathbb{N}}$ and $(\mathfrak{D}_{1,\lambda})_{\lambda\in\mathbb{N}}$ be two distributions over $\{0,1\}^{n(\lambda)}$ for a non-decreasing polynomial $n(\lambda)$. The value of $\lambda\in\mathbb{N}$ is called the *security parameter*.

An algorithm $\mathcal{A}: \{0,1\}^{n(\lambda)} \to \{0,1\}$ is called a *distinguisher* between the distributions $\mathfrak{D}_{0,\lambda}$ and $\mathfrak{D}_{1,\lambda}$. We define its *distinguishing* advantage as:

$$\mathrm{Adv}_{\mathscr{A}}(\lambda) := \Big|\underbrace{\Pr_{x \leftarrow \mathfrak{D}_{1,\lambda}}[\mathscr{A}(X) = 1]}_{\text{probability of being right}} - \underbrace{\Pr_{x \leftarrow \mathfrak{D}_{0,\lambda}}[\mathscr{A}(X) = 1]}_{\text{probability of being mistaken}}\Big|.$$

We say that $\mathfrak{D}_{0,\lambda}$ and $\mathfrak{D}_{1,\lambda}$ are computationally indistinguishable if for any distinguisher \mathscr{A} running in $O(\lambda^c)$ for some $c > 0^2$ its advantage $Adv_{\mathscr{A}}$ is a $o(1/\lambda^c)$ for some c > 0.

Our goal now is to extend the One-Time PAD to messages m larger than the key k. We want to construct some function G that takes as input the key $k \in \{0,1\}^n$ and expend it to a string $G(k) \in \{0,1\}^\ell$ for some $\ell > k$ that is computationally hard to distinguish from a uniform random string. This is called a PGR or pseudo-random generator.

Definition 5. A pseudo-random generator is a pair of poly-time algorithms (Setup, G) such that:

- \triangleright Setup is an algorithm that takes as input a security parameter λ (taken as a string 1^{λ} of length λ , *i.e.* we write λ in unary) and returns a public parameter;

such that

- \triangleright G is deterministic;
- $\triangleright \ \ell(\lambda) > n(\lambda)$ (we say that it is expanding)
- by the distributions $\{\mathcal{U}(\{0,1\}^{\ell(\lambda)})\}_{\lambda\in\mathbb{N}}$ and $\{G(\mathcal{U}(\{0,1\}^{n(\lambda)}))\}_{\lambda\in\mathbb{N}}$ are computationally indistinguishable (we call it *pseudo-randomness*).

Another way of defining a pseudo-random generator is with unpredictability instead of pseudo-randomness.

Definition 6. This is the same definition as before but replacing pseudo-randomness with *unpredictability*.

A PRG (Setup, G) is unpredictable if, for any index $i \in \{0, \dots, \ell(\lambda)\}$

²This means it is polynomial in λ , which we will write poly(λ)

³This means it is negligible in terms of λ , which we will write negl(λ).

and any efficient adversary $\mathcal{A}: \{0,1\}^n \to \{0,1\}$, we have that:

$$\left| \Pr_{k \leftarrow \mathcal{U}(\{0,1\}^{n(\lambda)}} \left[\mathcal{A}(G(k)_{|i}) = G(k)_{i+1} \right] - \frac{1}{2} \right| = \operatorname{negl}(\lambda).$$

We can now prove that the two definitions are equivalent.

Theorem 2. The two definitions of a PRG are equivalent.

Proof. To simplify, we will remove the security parameter from the notations.

On one side, assume we have a predictor $\mathcal{A}: \{0,1\}^i \to \{0,1\}$ that succeeds in guessing $G(k)_{i+1}$ with non-negligible probability. We then construct a distinguisher \mathfrak{B} against pseudo-randomness as \mathfrak{B} receive a sample x from either $\mathfrak{D}_0 = \mathcal{U}(\{0,1\}^\ell)$ or $\mathfrak{D}_1 = G(\mathcal{U}(\{0,1\}^n))$: algorithm \mathfrak{B} runs \mathfrak{A} on input $x_{|i}$ and checks if $\mathcal{A}(x_{|i}) \stackrel{?}{=} x_{i+1}$. In that case, \mathfrak{B} will return 1; otherwise it returns 0. What is the advantage of \mathfrak{B} ?

$$\operatorname{Adv}_{\mathfrak{B}} = \Big| \Pr_{x \leftarrow \mathfrak{D}_{1}} [\mathfrak{B}(x) = 1] - \underbrace{\Pr_{x \leftarrow \mathfrak{D}_{0}} [\mathfrak{B}(x) = 1]}_{1/2} \Big|$$
$$= \Big| \Pr_{x \leftarrow \mathfrak{D}_{1}} [\mathfrak{A}(x_{|i}) = x_{i+1}] - \frac{1}{2} \Big|.$$

This is the definition of the predictability advantage of \mathcal{A} (which is non-negligible by assumption).

Next, we will use a technique called an *Hybrid Argument* (due to Yao in '82). Assume we have a distinguisher \mathcal{A} such that

$$Adv_{\mathscr{A}} = \Big| \Pr_{x \leftarrow \mathscr{D}_{1}} [\mathscr{A}(x) = 1] - \Pr_{x \leftarrow \mathscr{D}_{0}} [A(x) = 1] \Big|$$

is non-negligible, say $\mathrm{Adv}_{\mathscr{A}} \geq \varepsilon$. We then define $\ell+1$ distributions

 $(\mathfrak{D}_i)_{i=0,...,\ell}$ as

$$\mathfrak{D}_{i} := \left\{ x \in \{0,1\}^{\ell} \middle| \begin{array}{c} x_{|i} = G(k)_{|i} \text{ for } k \leftarrow \mathcal{U}(\{0,1\}^{n}) \\ x_{|i+1,\dots,\ell} \leftarrow \mathcal{U}(\{0,1\}^{\ell-i}) \end{array} \right\}.$$

We then have, by all the terms cancelling (this is a telescoping sum), that:

$$\varepsilon \leq \operatorname{Adv}_{\mathscr{A}}(\mathfrak{D}_{0}, \mathfrak{D}_{n}) = \left| \sum_{i=0}^{\ell} \left(\Pr_{x \leftarrow \mathfrak{D}_{i+1}} [\mathscr{A}(x) = 1] - \Pr_{x \leftarrow \mathfrak{D}_{i}} [\mathscr{A}(x) = 1] \right) \right|$$

$$\leq \sum_{i=0}^{\ell} \left| \Pr_{x \leftarrow \mathfrak{D}_{i+1}} [\mathscr{A}(x) = 1] - \Pr_{x \leftarrow \mathfrak{D}_{i}} [\mathscr{A}(x) = 1] \right|$$

$$\leq \sum_{i=0}^{\ell} \operatorname{Adv}_{\mathscr{A}}(\mathfrak{D}_{i}, \mathfrak{D}_{i+1}).$$

By the pigeonhole principle, we have that there exists an $i \in \{0, \dots, \ell\}$, such that

$$\Big|\Pr_{x \leftarrow \mathfrak{D}_{i+1}}[\mathfrak{A}(x) = 1] - \Pr_{x \leftarrow \mathfrak{D}_i}[\mathfrak{A}(x) = 1]\Big| \ge \frac{\varepsilon}{\ell + 1}.$$

As ε is non-negligible and $\ell+1$ being polynomial in λ , we have that $\varepsilon/(\ell+1)$ is non-negligible. How to turn this into a predictor for i? Let us define \mathfrak{B}_i as a predictor which is given $G(k)_{|i|}$ and supposed to predict $G(k)_{i+1}$. Algorithm \mathfrak{B}_i will computes $x \in \{0,1\}^{\ell}$ with $x \leftarrow G(k)_{|i|} || y$ where $y \leftarrow \mathcal{U}(\{0,1\}^{\ell-i})$. Then \mathfrak{B}_i runs algorithms \mathfrak{A} on input x, and \mathfrak{A} returns a bit $b \in \{0,1\}$ and \mathfrak{B}_i outputs a prediction x_{i+1} for $G(k)_{i+1}$ if b=1 and $1-x_{i+1}$

otherwise. What is the prediction advantage of \mathfrak{B}_i ?

$$\Pr[\mathfrak{B}_{i}(G(k)_{|i}) = G(k)_{i+1}]$$

$$= \Pr\begin{bmatrix} \mathfrak{A}(x) = 0 \land x_{i+1} = 1 - G(k)_{i+1} \\ \lor \\ \mathfrak{A}(x) = 1 \land x_{i+1} = G(k)_{i+1} \end{bmatrix}$$

$$= \Pr_{x \leftarrow \mathfrak{D}_{i}}[\mathfrak{A}(x) = 0 \land x_{i+1} = 1 - G(k)_{i+1}]$$

$$+ \Pr_{x \leftarrow \mathfrak{D}_{i}}[\mathfrak{A}(x) = 1 \land x_{i+1} = G(k)_{i+1}]$$

$$= \frac{1}{2} \Pr_{x \leftarrow \bar{\mathfrak{D}}_{i+1}}[\mathfrak{A}(x) = 0] + \frac{1}{2} \Pr_{x \leftarrow \bar{\mathfrak{D}}_{i}}[\mathfrak{A}(x) = 1]$$

$$= \frac{1}{2} \left(\Pr_{x \leftarrow \bar{\mathfrak{D}}_{i+1}}[\mathfrak{A}(x) = 1] + 1 - \Pr_{x \leftarrow \bar{\mathfrak{D}}_{i+1}}[\mathfrak{A}(x) = 1] \right)$$

where we write $\bar{\mathfrak{D}}_{i+1}$ is the "flipped" of \mathfrak{D}_{i+1} . We have that:

$$\Pr_{x \leftarrow \mathfrak{D}_{i}}[\mathcal{A}(x) = 1]$$

$$= \Pr_{x \leftarrow \mathfrak{D}_{i}}[\mathcal{A}(x) = 1 \land x_{i+1} = G(k)_{i+1}]$$

$$+ \Pr_{x \leftarrow \mathfrak{D}_{i}}[\mathcal{A}(x) = 1 \land x_{i+1} = 1 - G(k)_{i+1}]$$

$$= \frac{1}{2} \Big(\Pr_{x \leftarrow \mathfrak{D}_{i}}[\mathcal{A}(x) = 1] + \Pr_{x \leftarrow \mathfrak{D}_{i+1}}[\mathcal{A}(x) = 1] \Big),$$

thus

$$\Pr_{x \leftarrow \bar{\mathcal{D}}_{i+1}}[\mathcal{A}(x) = 1] = 2 \Pr_{x \leftarrow \mathcal{D}_i}[\mathcal{A}(x) = 1] - \Pr_{x \leftarrow \mathcal{D}_{i+1}}[\mathcal{A}(x) = 1].$$

Hence,

$$\begin{split} \Pr[\mathcal{B}_i(G(k)_{|i}) - G(k)_{i+1}] &= \\ \frac{1}{2} \Pr_{x \leftarrow \mathcal{D}_{i+1}}[\mathcal{A}(x) = 1] + 1 - 2 \Pr_{x \leftarrow \mathcal{D}_i}[\mathcal{A}(x) = 1] + \Pr_{x \leftarrow \mathcal{D}_{i+1}}[\mathcal{A}(x) = 1]. \end{split}$$

Finally, we can conclude that:

$$\operatorname{Adv}_{\mathscr{A}}(\mathfrak{D}_{i},\mathfrak{D}_{i+1}) = \left| \Pr[\mathfrak{B}_{i}(G(k)_{|i}) = G(k)_{i+1}] - \frac{1}{2} \right| \ge \frac{\varepsilon}{n}.$$