
A perfectly secure symmetric
encryption scheme:
ONE-TIME PAD

This encryption scheme achieves information-theoric security.

Definition 1 (Symmetric encryption). Let K be a key space, P

be a plain-text space and let C be a ciphertext space These three
spaces are finite spaces.

A symmetric encryption scheme over (K,P, C) is a tuple of three
algorithms (KeyGen, Enc, Dec) :

. KeyGen provides a sample k of K;

. Enc : K×P→ C;

. Dec : K× C→ P.

Without loss of generality, we will assume that im Enc = C. We
want to ensure Correctness: for any key k ∈ K and message
m ∈ P, we have that:

Dec(k, Enc(k, m)) = m.

The elements m and k are independent random variables and all
the elements in K and P have non-zero probability.

– 1/9 –– 1/9 –– 1/9 –

Hugo Salou – m1 ens lyon Cryptography and Security

Remark 1. The algorithm Enc could (and should1) be probabilistic.
However, the algorithm Dec is deterministic.

So far, we did not talk about efficiency of these algorithms.

Definition 2 (Shannon, 1949). A symmetric encryption scheme
is said to have perfect security whenever, for any m̄ and any c̄,

Pr
k,m

[m = m̄ | Enck(m) = c̄] = Pr
m

[m = m̄].

The intuition is that knowing the encrypted message tells me nothing
about the message.

Lemma 1 (Shannon). Given a symmetric encryption scheme
(KeyGen, Enc, Dec) has perfect security then |K| ≥ |P|.

Proof. Let c̄ ∈ C and define

S := {m̄ ∈ P | ∃k̄ ∈K, m̄ = Dec(k̄, c̄)}.

Let N := |S|. We have that N ≤ |K| as Dec is deterministic.
We also have that N ≤ |P| as S⊆ P. Finally, assume N < |P|.
This means, there exists m̄ ∈ P such that m̄ 6∈ S. Then,

Pr[m = m̄ | Enck(m) = c̄] = 0,

but by assumption, Pr[m = m̄] 6= 0. So this is not a perfectly
secure scheme. We can conclude that

N = |P| ≤ |K|.

1If the algorithm is deterministic, if we see two identical ciphers we know that the
messages are identical, and this can be seen as a vulnerability of this protocol.

– 2/9 –– 2/9 –– 2/9 –

Hugo Salou – m1 ens lyon Cryptography and Security

Example 1 (One-Time PAD). Let K = C = P = {0, 1}`. Here
are the algorithms used:

. KeyGen samples from U({0, 1}`).

. Enc(k, m) we compute the XOR c = m⊕ k.

. Dec(k, m) we compute the XOR m = c⊕ k.

Theorem 1. The One-Time PAD is a perfectly-secure symmetric
encryption.

Proof. Correctness. We have that

Dec(k, Enc(k, m)) = k ⊕ k ⊕m = m.

Security. We have, by independence of m and k we have that

Pr[m = m̄ | Enc(k, m) = c̄] = Pr[m = m̄ | k ⊕m = c̄]
= Pr[m = m̄].

Remark 2. This example is not practical:

. keys need to be larger than the message;

. you cannot encrypt twice: for example, c1 = m1 ⊕ k and
c2 = m2 ⊕ k, then we have c1 ⊕ c2 = m1 ⊕m2.

This last part is why that protocol is called a One-Time secure
encryption.

We want to be able to encrypt arbitrarily long messages! We will have
to make a trade-off and we choose to not care about perfect security.
Why? In real life, we don’t care about proving that something
is proven to be absolutely infeasible, we only want to believe it is

– 3/9 –– 3/9 –– 3/9 –

Hugo Salou – m1 ens lyon Cryptography and Security

infeasible in practice.

Computational complexity is sufficient in practice.

Let us be more precise.

Definition 3. Let D0 and D1 be two distributions over {0, 1}n.

An algorithm A : {0, 1}n → {0, 1} is called a distinguisher
between D0 and D1. We define its distinguishing advantage as:

AdvA :=
∣∣∣ Pr

x←D1
[A(X) = 1]︸ ︷︷ ︸

probability of
being right

− Pr
x←D0

[A(X) = 1]︸ ︷︷ ︸
probability of

being mistaken

∣∣∣.

We say that D0 and D1 are computationally indistinguishable if
for any efficient distinguisher A its advantage AdvA is small.

This definition is not very formal yet, we have not defined “efficient”
and “small.” This can be formalized by introducing a parameter λ ∈
N called the security parameter.

Definition 4. Let (D0,λ)λ∈N and (D1,λ)λ∈N be two distributions
over {0, 1}n(λ) for a non-decreasing polynomial n(λ). The value
of λ ∈ N is called the security parameter.

An algorithm A : {0, 1}n(λ) → {0, 1} is called a distinguisher
between the distributions D0,λ and D1,λ. We define its distinguishing
advantage as:

AdvA(λ) :=
∣∣∣ Pr

x←D1,λ

[A(X) = 1]︸ ︷︷ ︸
probability of

being right

− Pr
x←D0,λ

[A(X) = 1]︸ ︷︷ ︸
probability of

being mistaken

∣∣∣.

We say that D0,λ and D1,λ are computationally indistinguishable
if for any distinguisher A running in O(λc) for some c > 02 its
advantage AdvA is a o(1/λc) for some c > 0.3

– 4/9 –– 4/9 –– 4/9 –

Hugo Salou – m1 ens lyon Cryptography and Security

Our goal now is to extend the One-Time PAD to messages m larger
than the key k. We want to construct some function G that takes as
input the key k ∈ {0, 1}n and expend it to a string G(k) ∈ {0, 1}` for
some ` > k that is computationally hard to distinguish from a uniform
random string. This is called a PGR or pseudo-random generator.

Definition 5. A pseudo-random generator is a pair of poly-time
algorithms (Setup, G) such that:

. Setup is an algorithm that takes as input a security
parameter λ (taken as a string 1λ of length λ, i.e. we
write λ in unary) and returns a public parameter;

. Gλ : {0, 1}n(λ) → {0, 1}`(λ) is an algorithm which takes a
string k of length n(λ) and return a string G(k) of length
`(λ) with `(λ) > n(λ).

such that

. G is deterministic;

. `(λ) > n(λ) (we say that it is expanding)

. the distributions {U({0, 1}`(λ))}λ∈N and {G(U({0, 1}n(λ)))}λ∈N
are computationally indistinguishable (we call it pseudo-
randomness).

Another way of defining a pseudo-random generator is with unpredictability
instead of pseudo-randomness.

Definition 6. This is the same definition as before but replacing
pseudo-randomness with unpredictability.

A PRG (Setup, G) is unpredictable if, for any index i ∈ {0, . . . , `(λ)}

2This means it is polynomial in λ, which we will write poly(λ)
3This means it is negligible in terms of λ, which we will write negl(λ).

– 5/9 –– 5/9 –– 5/9 –

Hugo Salou – m1 ens lyon Cryptography and Security

and any efficient adversary A : {0, 1}n → {0, 1}, we have that:∣∣∣∣ Pr
k←U({0,1}n(λ)

[
A(G(k)|i) = G(k)i+1

]
− 1

2

∣∣∣∣ = negl(λ).

We can now prove that the two definitions are equivalent.

Theorem 2. The two definitions of a PRG are equivalent.

Proof. To simplify, we will remove the security parameter from
the notations.

On one side, assume we have a predictor A : {0, 1}i → {0, 1}
that succeeds in guessing G(k)i+1 with non-negligible probability.
We then construct a distinguisher B against pseudo-randomness
as B receive a sample x from either D0 = U({0, 1}`) or D1 =
G(U({0, 1}n)): algorithm B runs A on input x|i and checks if
A(x|i) ?= xi+1. In that case, B will return 1; otherwise it returns
0. What is the advantage of B?

AdvB =
∣∣∣ Pr

x←D1
[B(x) = 1]−

1/2︷ ︸︸ ︷
Pr

x←D0
[B(x) = 1]

∣∣∣
=

∣∣∣ Pr
x←D1

[A(x|i) = xi+1]−
1
2

∣∣∣.
This is the definition of the predictability advantage of A (which
is non-negligible by assumption).

Next, we will use a technique called an Hybrid Argument (due to
Yao in ’82). Assume we have a distinguisher A such that

AdvA =
∣∣∣ Pr

x←D1
[A(x) = 1]− Pr

x←D0
[A(x) = 1]

∣∣∣
is non-negligible, say AdvA ≥ ε. We then define `+1 distributions

– 6/9 –– 6/9 –– 6/9 –

Hugo Salou – m1 ens lyon Cryptography and Security

(Di)i=0,...,` as

Di :=
{

x ∈ {0, 1}`

∣∣∣∣∣ x|i = G(k)|i for k ← U({0, 1}n)
x|i+1,...,` ← U({0, 1}`−i)

}
.

We then have, by all the terms cancelling (this is a telescoping
sum), that:

ε ≤ AdvA(D0, Dn) =
∣∣∣∣ ∑̀

i=0

(
Pr

x←Di+1
[A(x) = 1]− Pr

x←Di

[A(x) = 1]
)∣∣∣∣

≤
∑̀
i=0

∣∣∣ Pr
x←Di+1

[A(x) = 1]− Pr
x←Di

[A(x) = 1]
∣∣∣

≤
∑̀
i=0

AdvA(Di, Di+1).

By the pigeonhole principle, we have that there exists an i ∈
{0, . . . , `}, such that∣∣∣ Pr

x←Di+1
[A(x) = 1]− Pr

x←Di

[A(x) = 1]
∣∣∣ ≥ ε

` + 1 .

As ε is non-negligible and ` + 1 being polynomial in λ, we have
that ε/(` + 1) is non-negligible. How to turn this into a predictor
for i? Let us define Bi as a predictor which is given G(k)|i and
supposed to predict G(k)i+1. Algorithm Bi will computes x ∈
{0, 1}` with x ← G(k)|i || y where y ← U({0, 1}`−i). Then Bi

runs algorithms A on input x, and A returns a bit b ∈ {0, 1} and
Bi outputs a prediction xi+1 for G(k)i+1 if b = 1 and 1 − xi+1

– 7/9 –– 7/9 –– 7/9 –

Hugo Salou – m1 ens lyon Cryptography and Security

otherwise. What is the prediction advantage of Bi?

Pr[Bi(G(k)|i) = G(k)i+1]

= Pr

 A(x) = 0 ∧ xi+1 = 1−G(k)i+1
∨

A(x) = 1 ∧ xi+1 = G(k)i+1


= Pr

x←Di

[A(x) = 0 ∧ xi+1 = 1−G(k)i+1]

+ Pr
x←Di

[A(x) = 1 ∧ xi+1 = G(k)i+1]

= 1
2 Pr

x←D̄i+1
[A(x) = 0] + 1

2 Pr
x←Di

[A(x) = 1]

= 1
2

(
Pr

x←Di+1
[A(x) = 1] + 1− Pr

x←D̄i+1
[A(x) = 1]

)
.

where we write D̄i+1 is the “flipped” of Di+1. We have that:

Pr
x←Di

[A(x) = 1]

= Pr
x←Di

[A(x) = 1 ∧ xi+1 = G(k)i+1]

+ Pr
x←Di

[A(x) = 1 ∧ xi+1 = 1−G(k)i+1]

= 1
2

(
Pr

x←Di

[A(x) = 1] + Pr
x←D̄i+1

[A(x) = 1]
)
,

thus

Pr
x←D̄i+1

[A(x) = 1] = 2 Pr
x←Di

[A(x) = 1]− Pr
x←Di+1

[A(x) = 1].

Hence,

Pr[Bi(G(k)|i)−G(k)i+1] =
1
2 Pr

x←Di+1
[A(x) = 1] + 1− 2 Pr

x←Di

[A(x) = 1] + Pr
x←Di+1

[A(x) = 1].

– 8/9 –– 8/9 –– 8/9 –

Hugo Salou – m1 ens lyon Cryptography and Security

Finally, we can conclude that:

AdvA(Di, Di+1) =
∣∣∣∣ Pr[Bi(G(k)|i) = G(k)i+1]−

1
2

∣∣∣∣ ≥ ε

n
.

– 9/9 –– 9/9 –– 9/9 –

	A perfectly secure symmetric encryption scheme: ONE-TIME PAD

