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1. Introduction.
Algebraic topology is the study of topological spaces through algebra.
Wemay compare two spaces by studying invariants. A simple invariant
is the number of connected components in the space.

Classifying spaces “up to equality” is very restrictive. When we consider
the usual example of the coffeemug that can be deformed into a torus,
we want to consider that the two spaces are identical. This tells us that
we should consider spaces “up to continuous deformation,” we will give a
more precise definition in section 2.

The goal of this internship was to formally prove (i.e. in a proof assis-
tant) a classical result in algebraic topology: there is a one to one corre-
spondencebetweencovering spaces and subgroupsof the fundamental
group. All of thedefinitionswill be give in section 2. However, themain
idea is: by studying subgroups, we get geometric insights.

To prove this result, we use Homotopy Type Theory (HoTT). This frame-
work links geometry and logic in one coherent paradigm based on Type
Theory (used in most proof assistants). It allows us to very simply rea-
son about many of the key concepts of algebraic topology. Instead of
thinking of types as logical propositions (as it usual in TypeTheory),we
think of them as topological spaces. We will discuss more about HoTT
in section 3.

Agda is the proof assistant used during this internship. When using
proof assistants like Rocq or Lean, we expect to use tactics in order to
prove a result (so, a type, as it is usual in Type Theory). These tactics
generate a term of the corresponding type. However, Agda doesn’t go
in this direction. Instead, we write terms directly with a Haskell-like

syntax. The Cubical version of Agda allows us to use Cubical Homotopy
TypeTheory, a variant of the one presented in theHoTTBook [Uni13] (the
main reference for Homotopy TypeTheory). A more complete presen-
tation of Agdawill be given in subsection 3.5.

In the appendices, you will find some technical background in Cate-
goryTheory (appendix B) and somemore context about this internship
(appendix A).

Acknowledgments. For introducing me to the world of Algebraic
Topology and Homotopy Type Theory, I am very grateful to Samuel
MIMRAM and Émile OLEON for being my internship supervisors. I
would also like to thank the other members of the Cosynus team for
kindly welcomingme.

Related Work. In this internship, we give an Agda-verified version of
the proof in [MO25]. Covering spaces in HoTTwere first introduced by
[HH18]; then, [WMP24] gave a algebraic-topology-focused proof of the
classification of covering spaces. The proof of the Galois Correspon-
dence givenhere (as the one in [MO25]) is shorter,more conceptual and
more easily generalizable to n-coverings (c.f. [MO25]).

2. Some elements of Algebraic Topology.
In this section, we will give an introduction to algebraic topology. The
main source for this section is [Hat02, Chapters 1 & 2].

In this section, we will write I for [0, 1]–the unit interval. Let X be a
topological space, that is, some spacewith anotion of openness and thus
continuity. In this section, we only deal with continuous functions, so a
“map” will refer to a continuous function.

2.1. Paths and Loops.
Let us start with a definition of paths and loops.

Definition 1. . Apath fromx to y (in the topological spaceX) is amap
p : I→ X such that p(0) = x and p(1) = y.

. A loop around x is a path from x to x.

We will write p : x { ywhen p is a path from x to y (in some implied
space X). We expect to be able to concatenate paths, and also to reverse
them.

Definition 2. Let p : x{ y and q : y{ z be paths.

. The reversed or inverse of path p is the path p−1 defined by:

p−1(t) := p(1 − t).

. The concatenation of paths p and q is the path p � q defined by :

p � q(t) :=

p(2t) if 0 ≤ t ≤ 1
2

q(2t − 1) if 1
2 ≤ t ≤ 1.

. The constant loop at point x is the loop reflx defined by:

reflx(t) := x.

Wecan take the reverse of anypaths butweneed that the commonend-
point matches when we want to concatenate paths. The notation reflx
may seemunusual when talking about paths, but it’ll makemore sense
after section 3.

We’d love to have some nice properties with the concatenation and in-
verse: for example, associativity of concatenation, or that reflx behaves
like a neutral element for concatenation. However, in general,we donot
have

(p � q) � r =7 p � (q � r).

This is a timing issue. For the first path, we spend the first quarter trav-
elling along p, then the next quarter along q, and finally the rest along
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r. For the second path, we spend the first half travelling along p and
then a quarter along q and finally the rest along r.

Another example is p �p−1: this path “behaves” like the loop reflx, but it’s
not equal to reflx. And for this example, it’s more than a timing issue,
we need to smoothly deform the path p, bringing closer the endpoint y
to x until we get reflx.

Strict equality is not the right way to compare paths. The right way is
equality up to smooth deformation, also known as a homotopy.

Definition 3. A homotopy from a path p : x{ y to a path q : x{ y is a
map

h : I × I→ X,

such that: for all t ∈ I,

1. h(0, t) = p(t),

2. h(1, t) = q(t),

3. h(t, 0) = x,

4. h(t, 1) = y.

We say that p and q are homotopic, written p ≈p q when there exists a
homotopy from p to q.

In the definition above, the conditions are boundary conditions: that is,
the initial slice (when the first parameter is 0) is p, the final slice is q
and all the slices are paths from x to y. The relation “homotopic to” is
an equivalence relation.

Uncurrying the definition of a homotopy, we have, in some sense, a
path h : p { q in the space of paths between x and y. To be very
formal, we’d need to define a topology on the set of paths between x
and y, which we don’t want to do. However, it is an important idea to
keep in mind.

Now that we have defined a new way of comparing paths, we need to
make sure that

1. the notions of concatenation and inverse are defined up to homo-
topy,

2. and we get the nice properties we expect from concatenation and
inverses.

Luckily, we do.

Lemma 1. Let p, q : u{ v and r, s : v{ w and t : w{ x. We have:

. if p ≈p q then p−1
≈p q−1;

. if p ≈p q and r ≈p s then p � r ≈p q � s;

. (p � r) � t ≈p p � (r � t);

. p � refly ≈p p ≈p reflx � p;

. p � p−1
≈p reflx;

. p−1 � p ≈p refly. �

With these property in mind, we can now introduce the fundamental
group.

2.2. Fundamental Group.
Definition 4. Given a topological space X with x ∈ X a point (we say
that (X, x) is a pointed topological space), its fundamental groupπ1(X, x)
is the set of homotopy classes of loops at x in spaceX.

The fundamental group really has the structure of a group, thanks to
lemma 1.

The fundamental group is oneof those invariantsdiscussed in the intro-
duction. Let us give a simple example of how the fundamental group
can be used to compare topological spaces.

Example 1. Consider the space R2 with the usual topology. The group
π1(R2, (1, 0)) is trivial: any loop is homotopic to refl(1,0). You can think
of scaling any loop at (1, 0) until it vanishes into a constant loop. As we
didn’t tear the loop, our deformation was smooth, i.e., a homotopy.

Example 2. Consider the subspace

V := {(x, y) ∈ R2
| x2 + y2

≥ 1}

of R2. It corresponds to R2 without a unit open disk. We have that
π1(V, (1, 0)) is isomorphic toZ. Let us see why in 3 steps.

1. There is a loop at point (1, 0) that goes once “around the hole inV”:
it is the loop p defined by p(t) := (cos 2πt, sin 2πt).

2. Any two different powersb of loop p are non homotopic. For ex-
ample, p is not homotopic to the constant refl(1,0) as it’d require
cutting p to “go through” the hole inV.

3. Given any loop at (1, 0), we can project it into a loop such that ev-
ery point is at distance 1 from the origin. Then, we can smoothly
deform the loop into pn (wheren is the signed number of times you
go around the hole).

This tells us that π1(V, (1, 0)) is freely generated by the homotopy class
of p and thus is isomorphic toZ.

The two spaces R2 and V are topologically different: they have a dif-
ferent fundamental group. It makes sense becauseR2 is topologically
equivalent to a single point, and V is topologically equivalent to the
unit circle S1. Only studying the number of connected components
wouldn’t have given us this geometric insight.

Change of base point. The base point of a pointed space (X, x) is x.
What happens to the fundamental group when we change the base
point? The answer is: not a lot, as long as the two base points have a
path between them.

Proposition 1. Let p : x{ y be a path. Then,

π1(X, x) −→ π1(X, y)

[ q ] 7−→ [ p−1 � q � p ]

is a group isomorphism, where [ q ] is the homotopy class of a path
q. �

So, whenX is non-empty and path-connected (that is, for any two pairs
of points, there is a path between them), there is no need to specify a
base point.

When there is no path between x and y, the fundamental groups could
be very different. For example, if we consider embedding R2 and V
on two parallel planes in R3 and considering the union of those two
planes, then the fundamental group in theR2-plane is still trivial and
other one is still isomorphic toZ.

Functoriality. Theπ1 “operation” acts on pointed spaces, but also acts
on pointed maps: that is, a basepoint-preserving map between pointed
spaces.c We say that π1 is functorial.

Proposition 2. Let (X, x) and (Y, y) be pointed spaces. A pointed map

f : (X, x)→ (Y, y)

induces a group homomorphism

π1( f ) : π1(X, x) −→ π1(Y, y)

[ p ] 7−→ [ f ◦ p ].

Thus,apointedhomeomorphism (a bijective continuous functionwhose
inverse is also continuous) induces a group isomorphism.

Homeomorphic spaces have the same fundamental group. It would

bThat is, repeated concatenation of p, or p−1 if the power is negative, as usual when ma-
nipulating groups.

cMore explicitly, f : (X, x) → (Y, y) is a pointed map if f : X → Y is continuous and if
f (x) = y.
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seem reasonable to compare topological spaces up to homeomorphism
but, as with path equality, it is too restrictive. For example, R2 and
{0} are topologically equivalent, but aren’t homeomorphic (simply for
cardinality reasons). We need to use homotopy equivalences.

2.3. Homotopy equivalence.
Let us first define a homotopy of maps.

Definition 5. A homotopy (of maps) from a map f : X → Y to a map
g : X→ Y is a map

h : X × I→ Y,

such that: for all x ∈ X,

1. h(x, 0) = f (x), 2. h(x, 1) = g(x).

When f and g are map-homotopic (that is, there exists a homotopy of
maps between them), we write f ≈ g. It is an equivalence relation.

We already introduced some notation for homotopies of paths: p ≈p q.
Is it the same as p ≈ q? No, in path homotopy, we require that the
endpoints of all slices are x and y. For example, any path p is map-
homotopic to the constant loop reflx.

Now that we have a newway of comparing functions, we need tomake
sure that composition and inverses (when they exist) are compatible
with map-homotopy.

Lemma 2. Given f ,u : X → Y and g, v : Y → Z, such that f ≈ u and
g ≈ v, we have that:

. f ◦ g ≈ u ◦ v;

. f −1
≈ u−1 if f and u are homeomorphisms.

Then we can finally define the notion of homotopy equivalences.

Definition 6. A homotopy equivalence between X and Y is a two maps
f : X→ Y and g : Y→ X such that:

f ◦ g ≈ idY and g ◦ f ≈ idX.

WewriteX u YwhenX andY are homotopy equivalent. It is an equiv-
alence relation.

Example 3. The spacesR2 and {0} are homotopy equivalent. We define:

. f : R2
→ {0}, x 7→ 0;

. g : {0} → R2, 0 7→ (0, 0).

On the one hand, we easily have that f ◦ g = id{0}. On the other hand,
we need to provide a homotopy between x ∈ R2

7→ (0, 0) ∈ R2 and
idR2 , so a map

h : R2
× I→ R2,

such that the initial slice is x 7→ (0, 0) and the final one is x 7→ x. We
can define it, for example, with

h((x, y), t) := (tx, ty).

This can be generalized toRn u {0} for any n ∈N.

Example 4. Recalling the definition ofV from example 2:

V := {(x, y) ∈ R2
| x2 + y2

≥ 1}.

ThenV is homotopy equivalent to S1. Here is a homotopy equivalence:

. the map f : S1
→ V is the inclusion map;

. the map g : V → S1 is ~v 7→ ~v/‖~v‖;

. we have g ◦ f = idS1 ;

. we provide h : (~v, t) 7→ (1 − t)~v + t~v/‖~v‖ a homotopy between
f ◦ g : ~v→ ~v/‖~v‖ and idV.

p4 p∞

S1

S1 R

Figure 1 4-sheeted cover and universal cover of S1

To justify the use of homotopy equivalences, we should give some re-
sults about homotopy equivalences and the fundamental group.

Proposition 3. If f : (X, x)→ (Y, y) is a pointed homotopy equivalence,
then the induced group homomorphism π1( f ) : π1(X, x) → π1(Y, y)
is an isomorphism. �

This concludes the subsection on homotopy equivalences.

2.4. Covering spaces.
We will start by defining what a covering space is and then give some
examples.

Definition 7. Let (X, x) be a pointed topological space. A (pointed) cov-
ering space is a space X̃ with a pointed map p : (X̃, x̃) → (X, x) with
the following property: every point ỹ ∈ X̃ has an open neighborhood
Uwhich is evenly covered, thatmeans the preimage p−1(U) is the union
of disjoint open sets in X̃, each of which is mapped homeomorphically
ontoU by p.

The disjoints open sets composing the preimage p−1(U) are called
sheets of X̃ overU.

Covering spaces give us a “local approximation” of our space. When
dealingwith complex spaces, studying this local lookalike give us some
geometric insight, and hiding the complexity of the global behavior.
They’re also useful in other fields like Algebraic Geometry and Differ-
ential Geometry for these reasons.

Here are some examples of covering spaces. We sometimes leave im-
plicit the chosen basepoint.

Example 5. Given a topological spaceX and some discrete spaceD, the
space X̃ := X×Dwith themap p : (x, d) 7→ x is called a trivial covering
space ofX.

Example 6. For any n ∈ N, we can construct a covering space of S1: we
choose X̃ to be S1, whichwe think as the subset ofCwhose points have
a magnitude of 1, and we choose the map

pn : S1
−→ S1

z 7−→ zn.

This corresponds to a covering of S1 with n sheets. Figure 1 shows this
covering space for n = 4 (left one).

Figure 1 shows a smooth deformation of X̃ such that applying p corre-
sponds to “flattening” that space on the unit circle S1.

Example 7. Another covering space of S1 is R with the map p∞ : x 7→
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e2iπx. We call it the universal cover of S1 for reasons wewill explain later.
Figure 1 shows this covering space (right one). This universal cover is
very important: it shows us what the space (here S1) but with only triv-
ial loops, up to homotopy. In our case, it looks like unwinding the circle
into an infinitely long line–R.

One important feature of covering spaces is the lifting property. Cov-
ering spaces are usually thought as being “geometrically above” the
topological space considered, as it is in figure 1. Given a map whose
codomain isX, we can “lift” it as amapwhose codomain is X̃ such that
projecting it back ontoX give us the expected result.

Definition 8. A lift of f : Y → X along p : X̃ → X is a map f̃ : Y → X̃
such that the following diagram commutes:

X̃

Y

X,

←→ p

←→
f̃

←

→f

i.e. p ◦ f̃ = f .

Lifts have a really powerful property:

Lemma 3 (Unique lifting property).Given two lifts, if they agree on one
point, then they agree on the whole connected component. �

Thus, considering path-connected pointed spaces, we only need to fol-
low the basepoint to know the lift’s whole behavior.

Paths and homotopy can thus be uniquely lifted, takingY = I andY =
I× I, the unit interval and unit square respectively. However, for these
two cases, we also have existence.

Lemma 4 (Path/Homotopy lifting property). Let X̃ be a cover ofX.

1. Given a path q : x{ y inX, there exists a unique path q̃ such that
q̃(0) = x and p ◦ q̃ = q.

2. Furthermore, if q 'p r then q̃ 'p r̃, and in particular q̃(1) = r̃(1).

Wecandefinemorphismsbetweenpointed covering spaces. Thus, for agiven
topological spaceX, the collection of pointed covering spaces ofXwith
morphisms between them forms a categorynamedCov(X, x) (i.e. com-
positionofmorphismsof cover and identities behave asweexpectd; see
appendix B for more details).

Definition 9. Given (X̃, x̃, p̃) and (X̄, x̄, p̄) two covering spaces of X, a
morphism of covering spaces from (X̃, x̃, p̃) to (X̄, x̄, p̄) is a map f :
(X̃, x̃)→ (X̄, x̄) such that the following diagram commutes:

X̃, x̃ X̄, x̄

X, x

←

→p̃

←

→
f

←→

p̄

i.e. such that p̄ ◦ f = p̃.

We can now definewhat universal coveringmeans (and fully understand
example 7).

Definition 10. A covering (X̃, p̃) ofX is said to be universal if for any cov-
ering (X̄, p̄) ofX there is a morphism from (X̃, p̃) to (X̄, p̄).

We can safely say “the” universal cover as it is unique up to isomor-
phism. This results from the fact that morphisms of covering spaces
are lifts.

Lemma 5. Given two universal covers, they are isomorphic.

Proof. Let X̃ and X̄ be twouniversal covers. Bydefinition, there aremor-

dThat is: associativity of composition and identity as neutral elements of composition.

phisms f : X̃→ X̄ and g : X̄→ X̃ such that

X̃, x̃ X̄, x̄ X̃, x̃

X, x

←

→
f

←

→p̃

←

→
g

←→ p̄ ←→

p̃

commutes. Then, by rearranging, we obtain the following commuta-
tive diagram

X̃, x̃

X̃, x̃

X, x

←→ p̃

←→
g◦ f

←

→p̃

which, by lemma 3 on X̃, implies g◦ f = idX̃, as g◦ f (x̃) = x̃. Similarly,
by applying the lemma on X̄, we have f ◦ g = idX̄. �

We also prove an important result: as soon as we have twomorphisms
f : X̃ → X̄ and g : X̄ → X̃ then X̃ and X̄ are isomorphic (for any
covering spaces). This give us an important lemma:

Lemma 6. Let Cov(X) be the set of covering spaces of X. We order
Cov(X) by the relation �: we have X̃ � X̄ if and only if there is a
morphism from X̃ to X̄. This forms a preoder (reflexive and transitive)
and thusweobtain an ordering on the isomorphismclasses of covering
spaces ofX.

Proof.Reflexivity with idX̃, transitivity with composition and symmetry
with the above remark. �

Under stronger hypotheses, we have an even better structure: a com-
plete lattice. The supremum of this lattice is the universal cover. It al-
ways exists as given by the following construction.

Definition 11.We say that a spaceX is:

. locallypath-connectedwhen, for every point x and every neighbor-
hood U, there exists a smaller neighborhood V ⊆ U of x that is
path-connected;

. simply-connected when it is path-connected and has a trivial fun-
damental group, i.e. every loop is homotopic to refl;

. semi-locally simply connected when, for every point x and every
neighborhoodU, any loop inU is homotopic to reflx inX.

Proposition 4. Let (X, x) be a pointed space. SupposeX is:

. path-connected ;

. locally path-connected ;

. semi-locally simply connected.

Then the set {
[ q ]
∣∣∣ q : x{ y for some point y

}
is the universal cover of (X, x)with the map [ q ] 7→ q(1). �

Using this construction, we can construct a fractal-like universal cov-
ering for the wedge of two circles.

Example 8. Thewedge of two circles, written S1
∨ S1, is the shape shown

in figure 2(a). Its fundamental group is the free group with two gener-
ators a and b (those correspond to the two loops shown in figure 2(a)).
Its universal cover is the fractal tree shown in figure 2(b). To see why,
we can fold the loops a and b to obtain S1

∨ S1 and the preimage of any
neighborhood (for a small enough one) is discrete, thus a covering. It
is universal thanks to the following result.

The “usual” definition of the universal cover is a cover with trivial fun-
damental group–it is an equivalent definition.

Proposition 5. A covering is universal iff it has a trivial fundamental
group. �
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a b

(a) Wedge of two circles

aa−1

b

b−1

(b) Universal cover

Figure 2 Wedge of two circles, S1
∨ S1, and its universal cover

This result will be a simple consequence of the Galois Correspon-
dence.

2.5. The Galois Correspondence.
We have now defined all the notions we need to understand the Ga-
lois Correspondence: fundamental groups and covering spaces are very
closely related. This is the result that was proven during this intern-
ship.

This result is analogue to the Galois Correspondence for fields exten-
sion: there is a one-to-one, inclusion-reversing correspondence be-
tween intermediate subfields of a field extension E/F are in bijection
with subgroups of the Galois groupGal(E/F).

Theorem 1. Let (X, x) be a pointed space that is path-connected, locally
path-connected, semi-locally simply connected. Then there is a bijec-
tionbetween the set of isomorphismclassesofpath-connectedpointed
coverings and subgroups ofπ1(X, x). Furthermore, this bijection is an
isomorphism of complete lattices. �

We will not prove this result “classically” (but one proof can be found
in [Hat02]) as we will express this theorem and prove it in Homotopy
TypeTheory in section 4.

Let us move on to a short introduction of Homotopy TypeTheory.

3. Homotopy Type Theory.
Homotopy Type Theory is an extension of Type Theory that is well-
suited for proving continuity-related results. We do not need to prove
that some function defined in HoTT is continuous as any HoTT-defined
function is inherently continuous.

3.1. Basics of Type Theory.
One very important from TypeTheory is the Curry–HowardCorrespon-
dence: formally proving a result is exactly the same as giving a program
whose type is the result. This is what many proof assistants are us-
ing under the hood (Rocq, Agda, Lean, etc). We specifically chose not to
use “proposition” instead of “result” as it has an important meaning in
HoTT. In this subsection, we give a succinct overview of Type Theory.
We will write a : A to say that a is an expression of typeA.

Dependent functions. In TypeTheory, we allow the type of f (x) to de-
pend on x. We write the type of f :

f :
∏
x:A

B(x),

where A is the type of x and B(x) the type of f (x). We say f is a de-
pendent function. In the case where B doesn’t depend on x, then we get
back non-dependent functions, which we write f : A → B. Under the
Curry–Howard correspondence, theΠ-type unifies the⇒ and ∀–the
implication and the universal quantification.

Dependent pairs. Continuing on dependent functions, we define de-
pendent pairs: we allow the type of the 2nd component of the pair to
depend on the 1st component. A pair 〈x, y〉 where x : A and y : B(x)
has a type:

〈x, y〉 :
∑
x:A

B(x).

In the case where B doesn’t depend on x, then we get back non-
dependent pairs, which we write 〈x, y〉 : A × B. Under the Curry–
Howard correspondence, theΣ-type unifies the∧ and ∃–the conjunc-
tion and the existential quantification. We will see that, in HoTT, exis-
tential quantifications andΣ-types aren’t exactly the same.

Universes. What is the type of a type? It’s a universe U[`] for some
integer ` ∈N. We call this integer the level of the universe. The type of
U[`] is U[` + 1]. This way, we have a hierarchy of universes:

U[0] : U[1] : U[2] : · · · : U[`] : U[` + 1] : U[` + 2] : · · · .

This is a trick to avoid Girard’s Paradox: having a type be its own type
U : Uwould result in an inconsistent system (we can prove false re-
sults). For the remainder of this section, we will write U “as if” it was
the type of all types, leaving the level implicit.

Currying. As often in functional programming, we will identify the
typesA→ B→ Ce withA × B→ C. As functions can be dependent,
this means we will often identify the types:∏

a:A

∏
b:B(a)

C(a, b) with
∏

〈a,b〉:
∑

a:A B(a)

C(a, b).

We will often write the left one for the type, but use the right one for
the term, writing f (x, y) instead of f (x)(y) or f (〈x, y〉).

This concludes our short overview of type theory.

3.2. Equality as path.
Aswe saw in section 2, strict equality is often too restrictive when con-
tinuity is involved. What is often called “equality type” in Type Theory
has to be reinterpreted to be less restrictive. The answer is paths.

This doesmakes sense for Algebraic Topology: when comparing paths,
we use a homotopy of paths–a path between paths. So “equalities”
(which we will now call identities or identifications, written IdA(x, y) or
x =A y, and it is a type) of paths in HoTT are homotopies.

Strict equality is also possible,whichwewillwrite≡ (following the con-
vention in [Uni13]), but it is not a type! When x and y are strictly or def-
initionally equal (equal by definition), then we do have a path from x to
y; namely, reflx, the constant path at x.

We do have one important fact to consider, the induction principle of
identifications, written ind=A in [Uni13]

f, but we will call it J to match
Cubical Agda’s induction principle. It is: for some type A with a : A
(often implicit), given a property

P :
∏
b:A

a =A b→ U,

if we have an element u of P(a, refla) then we obtain an element of:∏
b:A

∏
p:x=A y

P(b, p).

Wealso require that J(P,u, a, refla) ≡ u. The intuition behind this prin-
ciple is that: to obtainP(b, p), wemove b along p,making p shorter and
shorter, until p is refla. This induction principle is shown to be consis-
tant with the “equality as path” interpretation.
eWewriteA→ B→ C forA→ (B→ C), asoften in functionalprogramming languages.
fThere are two versions in [Uni13]: based path induction ind′=A

and path induction ind=A .
They are equivalent (this is shown in [Uni13]). Here, we use based path induction, as it
is the one used by Cubical Agdawhen using J.
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Abeginnermistake is to think that every path should be refl and that, to
prove a result about any path, only the refl case need to be considered.
This is false: for example, not every loop is refl (we will see later), as to
apply J,weneed tobeable tomoveoneendpoint. This idea that any loop
is refl is called axiomK, which is fundamentally different from J.

J :

implicit︷ ︸︸ ︷∏
A:U

∏
a:A

∏
P:
∏

b:B a=Ab→U

P(a, refla)→
∏
b:B

∏
p:a=Ab

P(b, p)

K :
∏
A:U

∏
a:A︸ ︷︷ ︸

implicit

∏
P:a=Aa→U

P(refla)→
∏

p:a=Aa

P(p).

Wedo not postulate axiomK.g

3.3. Transport, action on paths.
The following result tells us that: if we have a path between two points,
and some result is true for one point, then it’s true for the other
point.

Proposition 6 (Transport). IfA is a type andP : A→ Ua family of types
overA, then we have a function:

transportP :

implicit︷ ︸︸ ︷∏
a:A

∏
b:B

a =A b→ P(a)→ P(b),

such that transportP(refla, x) ≡ x.

Proof.Bypath induction on p : a =A b,we consider the casewhere b ≡ a
andp ≡ refla. Letx : P(a). Wenowhave to give an element of typeP(a).
To satisfy the last relation, we give x. �

Another result is that functions are inherently continuous. That is, if
there is a path between two points, applying a (non-dependent) func-
tion give us a path between the image of two points. After this proposi-
tion, we will freely use “map” and “function” when talking about HoTT-
defined functions.

Proposition 7 (Application/Action on paths).Given a non-dependent
function f : A→ B, then we have a function

ap f :

implicit︷ ︸︸ ︷∏
a:A

∏
b:A

a =A b→ f (a) =B f (b),

such that ap f (refla) ≡ refl f (a).

Proof.By induction on path p : a =A b, we consider the case b ≡ a and
p ≡ refl. In this case, we have to give a path from f (a) to f (a)–refl f (a).

�

3.4. Types are∞-groupoids.
The structure we obtain is an ∞-groupoid (see appendix B for more
details): we can consider paths p, q : x =A y between points, paths
between paths r, s : p =x=A y q, and so on; and all of these paths are
invertible and composable and follow basic group-like laws (these are
exactly the ones in lemma 1, on page 3).

Proposition 8 (Inverse & composition). LetA be a type and x, y, z : A.

. There is a function inv : x =A y → y =A x such that inv(reflx) ≡
reflx.

. There is a function concat : x =A y→ y =A z→ x =A z such that
concat(reflx, reflx) ≡ reflx.

gAgda, by default, does postulate axiom K but it can be disabled. It is always disabled
when using Cubical Agda.

We will often write p−1 for inv(p) and p � q for concat(p, q), matching
notations from definition 2 (page 2).

Proof. . By induction, it suffices to define inv(reflx) :≡ reflx.

. By double induction,h it suffices to define concat(reflx, reflx) :≡
reflx.

�

Defining these path operations,wewant them to follow the sameprop-
erties as in lemma 1, but we are proving them differently: by path in-
duction. Once every path considered is refl, all of these follow defini-
tionally.

Proposition 9 (Groupoid laws). Let p : u = v and q : v = w and r : w = x.
We have:

. (p�q)�r = p�(q�r);

. p � refly = p

. p = reflx � p;

. p � p−1 = reflx;

. p−1 � p = refly.

�

These laws are known as groupoid laws. A groupoid is a structure very
similar to groups, except that the binary operation · is not defined ev-
erywhere. In this case, we can compose paths when the common end-
pointmatches. There are some conditions onwhen it is mandatory for
the composition to be defined (for example a · a−1 and a−1

· a must
always be defined) in order to have the groupoid structure. In our
case, paths follow these conditions. See appendix B for more details
on groupoids.

Having this result, we obtain that: in HoTT, types are∞-groupoids as
these lawsare true forpaths,pathsbetweenpaths,pathsbetweenpaths
between paths, etc.

3.5. Cubical Agda.
Cubical Agda is the proof assistant used during this internship. It has
aHaskell-like syntax where functions are defined in two parts: its type
and then its definition.

For example, defining the identity function on some globally defined
type A is done with:

id : A → A

id a = a

Notice the use of the Unicode arrow: this is not fancy typesetting but
rather a choice of Agda to heavily rely on these symbols in the standard
library.

Amore robust implementation of the identity functionwould look like
this:

id : {ℓ : Level} {A : Type ℓ} → A → A

id a = a

makinguse of implicit arguments A and ℓ tomake the identity function
work for any type, at any level in the universe hierarchy (the Level type
isn’t in any universe; it’s not a unique instance, as we will see later).

All of what was discussed in subsections 3.1–3.4 is true in Agda, using
the correct syntax. Table 1 give a correspondence between Agda’s syn-
tax and the one given in subsections 3.1–3.4. Notice that, to define a
pair, spaces are important (as variables are only delimited by paren-
theses and spaces): writing “(x,y)” would lead Agda to think you use a
variable named “x,y”.

Agda has different notations regarding definitional/propositional
equality from the ones presented before (the chosen conventions here

hThere are threeways of defining p �q: by induction on p; on q; on both. Depending on our
choice, concatenatingwith refl canbe canceledon the left/right bydefinition. Although,
as we will see, canceling of reflx for concatenation holds propositionally in all cases.
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name type theory cubical agda
Universe at level ` U[`] Type ℓ

Dependent function type
∏

x:A B(x) (x : A) → B x

Non-dependent function type A→ B A → B

Dependent pair type
∑

x:A B(x) Σ A (λ x → B x)

Non-dependent pair type A × B A × B

Identity type x =A y x ≡ y

Function definition x 7→ f (x) λ x → f x

Pair definition 〈x, y〉 (x , y)

Path induction J(P,u, p) J P u p

Action on path p ap f (p) cong f p

Transport along p transportB(p, x) subst B p u

Path concatenation p � q p ∙ q

Path inversion p−1 p ⁻¹

Table 1 Correspondence of syntax

are from [Uni13]): definitional equality is = and not ≡, and proposi-
tional equality (a.k.a. identity types) are written x ≡ y instead of the
usual x =A y.

Also,CubicalAgda is usingCubicalHomotopy TypeTheory, and the op-
erations above are defined a bit differently “under the hood”.

Paths are special functions. Instead of relying on paths as being some
built-in inductive types treated as a black box, in Cubical Agda (as it is
defined in Cubical Homotopy TypeTheory), paths are, in some special
way, functions from I to some type A: this looks very similar to defi-
nition 1 (page 2). This I type is, like Level, outside the universe hierar-
chy. It has two special elements: i0 and i1; and 3 operations: minimum
written ∧ (infix), maximum written ∨ (infix) and “inversion” t 7→ 1 − t
written ~ (prefix). The only constraint on the definition of a path as a
function is that: the endpoints must be definitionally equal to those in
the type. This way, we can easily define inv and ap:

_⁻¹ : x ≡ y → y ≡ x

p ⁻¹ i = p (~ i)

cong : (f : A → B) → x ≡ y → f x ≡ f y

cong f p i = f (p i)

Dependent paths, PathP. In HoTT, it is sometimes useful to have a
path between two elements of different types, as long as there is a path
between them. In [Uni13], transport is used to get back to the “path
between two elements of the same type” situation (we will give more
details about that in subsection 3.8 when talking about equality in Σ-
types). In Cubical Agda, there is an even better way: PathP. An expres-
sion p of type PathP (λ i → P i) x y is a dependent path between x :

P i0 and y : P i1 such that p i : P i for all i : I.The type x ≡ y is the
special case when P doesn’t depend on i.

Transport, transport everywhere. One of the primitive operations in
Cubical HoTT is generalized transport, transp. It allows to compute the
transport of elements, but also to give a PathP between an element and
its transport. This is known as subst-filler:

subst : (B : A → Type ℓ) → x ≡ y → B x → B y

subst B p u = transp (λ i → B (p i)) i0 u

subst-filler : (p : x ≡ y) (B : A → Type ℓ) (u : B x)

→ PathP (λ i → B (p i)) u (subst B p u)

subst-filler p B u i =

transp (λ j → B (p (i ∧ j))) (~ i) u

Understanding why subst-filler works and how the special rules for
typechecking transp are defined is beyond the scope of this document.
All you need to remember is that there is a dependent path, PathP, from
an element to its transport given by subst-filler.

In Cubical Agda, transport is everywhere: even J is defined in terms of
transport. But, unlike in the version of HoTT from [Uni13], we do not
have the same definitional equalities:

subst B refl u ≠ u and J P u refl ≠ u,

but we do have propositional equalities:

substRefl u : subst B refl u ≡ u,

JRefl P u : J P u refl ≡ u.

Filling squares, cubes, etc. In Cubical Agda, composition of paths
is defined a bit differently than in [Uni13]: we use 2D cubes (a.k.a.
squares) to define them. Cubical Agda give us some primitive op-
eration, hcomp, to allow for composition of n-ary composition of m-
dimensional cubes. Using hcomp, we can define ternary composition
(i.e. giving the last edge of a square):

x w

y z
←

→

p

←

→
p ∙∙ q ∙∙ r

←

→
q

←

→

r

_∙∙_∙∙_ : x ≡ y

→ y ≡ z

→ z ≡ w

→ x ≡ w

Binary composition of paths is defined using this ternary composition
but having the first path be refl:

x z

x y

refl

←
→

p ∙ q

←

→
p

←

→

q

_∙_ : x ≡ y → y ≡ z → x ≡ z

p ∙ q = refl ∙∙ p ∙∙ q

Notice that, by using underscores in the name, you can define binary
infix operations. You can make some pretty powerful notations this
way.

3.6. Equivalences and the Univalence Axiom.
Definition 12. . Two types A and B are equivalent, written A ' B,

when there is a map f : A→ B such that f is an equivalence.

. Amap f : A→ B is an equivalence, written isEquiv( f ), when:

– there exists a map g : B → A such that for all b : B, there
exists a path f (g(b)) =B b;

– there exists a map h : B → A such that for all a : A, there
exists a path h( f (x)) =A x.

Therefore, as types, we haveA ' B :≡
∑

f :A→B isEquiv( f )where

isEquiv( f ) :≡
( ∑

g:B→A

f ◦ g ∼ idB

)
×

( ∑
h:B→A

h ◦ f ∼ idA

)
,

and u ∼ v :≡
∏

x:X u(x) =Y(x) v(x)when u, v :
∏

x:X Y(x).

Putting it simply: two typesA andB are equivalentwhen there is amap
that is left-invertible and right-invertible. The notation∼ is something
seen before: a homotopy of maps. So, equivalence of types is exactly
homotopy equivalence of spaces.

Lemma 7. We can define a map

idToEquiv : A =U B→ A ' B,
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such that idToEquiv(reflA) :≡ idEquivA.

Proof.By induction, we only have to define idToEquiv(reflA). We define
it to be the identity equivalence: we define f , g, h :≡ idA and all the
paths are refl. �

The univalence axiom is the following:

Axiom (Univalence axiom).Themap idToEquiv itself is an equivalence:

(A =U B) ' (A ' B).

Themost important thing to remember is: there is a path between two
equivalent types. This map from an equivalence to a path, we will call
it

ua : (A ' B)→ (A =U B),

(in Cubical Agda, it is also ua).

One more consequence to this univalence axiom is that: there is an
induction principle for equivalences (it is known as JEquiv in Cubical
Agda).

Proposition 10. Given a family of typesP :
∏

B:U A ' B→ U, if we give
an element of type P(A, idEquivA) then we get:∏

B:U

∏
e:A'B

P(B, e).

�

This univalence axiom allows homotopy type theorists to prove a very
simple result that type theorists usually postulate: function extension-
ality.

Proposition 11 (Function extensionality). Given two dependent func-
tions f and g of type

∏
x:A B(x), there is a map

funExt− : f =∏x:A B(x) g→
∏
x:A

f (x) =B(x) g(x)︸                ︷︷                ︸
f∼g

.

Assuming the univalence axiom, this map is an equivalence. �

This proof can be found in [Uni13, Section 4.9], but a very simple proof
exist in Cubical Homotopy TypeTheory:

funExt-equiv :

{A : Type ℓ}

{B : A → Type ℓ'}

(f g : (x : A) → B x)

→

(f ≡ g) ≃ ((x : A) → f x ≡ g x)

funExt-equiv {A = A} {B = B} f g =

isoToEquiv (iso funExt⁻ funExt (λ _ → refl) (λ _ → refl))

where

funExt⁻ : f ≡ g → (x : A) → f x ≡ g x

funExt⁻ p x i = p i x

funExt : ((x : A) → f x ≡ g x) → f ≡ g

funExt p i x = p x i

Here, we define an isomorphism (same as the equivalence but left- and
right-inverses are the same) and then get an equivalence. The impor-
tant part lies in the definition of funExt and funExt⁻wherewe only need
to swap i and x as, in Cubical HoTT, paths look a lot like functions. In
this case, no need to use the univalence axiom or do a path induction
like we’d have to do in the HoTT proof to define funExt−.

Therefore,∼ and= are equivalent.

3.7. Higher inductive types, HITs.
Higher inductive types look a lot like regular inductive types (using
inductive constructors) but allow defining paths. To show the defini-
tions, we will use Cubical Agda code.

Let us start with some simple regular inductive types: booleans, posi-
tive integers, the unit type, the empty type; thenwe’ll move on to higher
inductive types with one important example: the circle (we will see
more examples of higher inductive types when explaining truncations
in subsection 3.11).

Booleans, 2. Booleans have two constructors that we commonly call
true and false (in [Uni13], they are called respectively 12 and 02). In Cu-
bical Agda, we can define the type of booleans, written 2, with the fol-
lowing.

data 𝟐 : Type ℓ-zero where

true : 𝟐

false : 𝟐

In this code we declare a type named 𝟐, with two constructors true and
false. This type is at level 0 in the universe hierarchy.

Defined like this, we can do pattern matching on a boolean; it corre-
sponds to case-by-case analysis. This patternmatching allows us to do
in Cubical Agdawhat [Uni13] calls the recursor:

rec2 :
∏
A:U

A→ A→ 2→ A,

rec2(A, x, y, true) :≡ x,
rec2(A, x, y, false) :≡ y;

it corresponds to the if then else construct.

Positive integers,N. We can define positive integers easily with two
constructors: zero (for 0) and succ (for n 7→ n+1). The succ constructor
takes an argument, another natural number n, such that succ(n) rep-
resents n + 1.

data ℕ : Type ℓ-zero where

zero : ℕ

succ : ℕ → ℕ

The recursor of the natural numbers allows us to distinguish between
zero and succ, but we need to add recursion into the mix to get the in-
duction principle of natural number (this is the usual induction prin-
ciple very commonly used).

indℕ : (P : ℕ → Type ℓ)

→ P zero

→ ((n : ℕ) → P n → P (succ n))

→ (n : ℕ) → P n

indℕ P z s zero = z

indℕ P z s (succ n) = s n (indℕ P z s n)

In Cubical Agda, case by case analysis is done this way: specify defini-
tions for each constructor on separate lines.

Unit type, 1. The unit type 1, with one constructor tt, will play an im-
portant rolewhendiscussing the proof of theGalois correspondence in
section 4.

data 𝟏 : Type ℓ-zero where

tt : 𝟏

It is terminal in the sense that any function looks likex 7→ tt (aswehave
function extensionality) so, for any typeA : U, there is only one func-
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tionA→ 1. Logically, this type corresponds to a tautology (sometimes
it can be written>).

Empty type, 0. The empty type 0 has no constructor, it is the type
equivalent of the empty set ∅.

data 𝟎 : Type ℓ-zero where

It is initial in the sense that, for any typeA : U, there is only one func-
tion0→ Aby simply doing a case-by-case analysis. Logically, this type
corresponds to falsity, or some absurdity; it is useful when defining the
logical not, as¬A :≡ A→ 0 (sometimes it can be written⊥).

Circle, S1. The circle has one point base : S1 and one non-trival iden-
tification loop : base =S1 base. Defining such an identification is pos-
sible as we are working with higher inductive types.

data 𝕊¹ : Type ℓ-zero where

base : 𝕊¹

loop : base ≡ base

Case-by-case analysis on an element of S1 is a bit more involved; we
need to consider two cases:

1. on the point base,

2. somewhere on the loop loop at position i,

and we must have continuity: on the second case, for i = i0 and i = i1,
wemust get the exact (definitional equality) result we gave for the base
case.

As said before, we will study some other higher inductive types when
dealing with truncations in subsection 3.11.

3.8. Simplifying identity types.
Sometimes, identity types can be quite complex, but they’re often
equivalent to simpler types. For example, for booleans 2, we define a
map:

code2 : 2→ 2→ U.

by double induction on booleans:

. code2(true, true) :≡ 1;

. code2(true, false) :≡ 0;

. code2(false, true) :≡ 0;

. code2(fase, false) :≡ 1.

And, by path induction, we can have that, for all x, y : 2, we have a
map

encode2 : x = y→ code2(x, y).

Then, by case by case analysis on x and y, we can get a map

decode2 : code2(x, y)→ x = y.

We can then get that encode2, is an equivalence by showing that
decode2 is a left- and right-inverse (one by case-by-case analysis, the
other by path induction).

This general pattern (code, encode, decode and show that they are in-
verses) is very important, and can be applied tomany scenarii (N, dis-
joint union, S1, etc).

Another simplification of identity types is forΣ-types. Onemight sus-
pect that there is an equivalence:(

〈a, b〉 = 〈a′, b′〉
)
' (a = a′) × (b = b′),

but this is ill-typed for dependent pairs (for non-dependent pairs, this
is true): b has type B(a) but b′ has type B(a′). We need to transport b

along the equality a = a′, obtaining:(
〈a, b〉 =∑a:A B(a) 〈a′, b′〉

)
'

∑
p:a=Aa′

transportB(p, b) =B(a′) b′.

InCubicalAgda, insteadofusing transportB,we canalsoprovidea PathP
between b and b′.

3.9. An illustrative example.
In this subsection, we will see how we can define a path

(2, true) = (2, false).

If we want this path in the space U× 2, then no luck ! However, in the
space

∑
A:U A, we can provide such a path.

Firstly, let us define the non-trivial automorphism of 2, not:

not : 2→ 2

not(true) :≡ false
not(false) :≡ true.

This map not induces an equivalence 2 ' 2. Then, by univalence, we
obtain a non-trivial path p (the trivial automorphism, identity, would
have given us the path refl) between 2 and 2.

After, that, we need to see that

transport(p, true) =2 false,

which is given by the other elements of the equivalence in the univa-
lence axiom (see [Uni13, Remark 2.10.4]). This is known as the “propo-
sitional computation rule” of the univalence axiom: transport along
some ua-equivalence-induced path correspond (propositional equal-
ity, not definitional) to applying the function in the equivalence.

Therefore, we obtain a path

(2, true) =∑A:U A (2, false).

3.10. n-types.
Let us finally explain the realmeaning of a proposition inHoTT andwhat
sets are.

Definition 13. . A contractible type, or (−2)-type, is a typeA such that
there exists a point a : A such that there is a map

∏
a′ :A a =A a′.

. A (mere) proposition, or (−1)-type, is a type A such that, for any
elements a, a′ : A, a = a′.

. A set, or 0-type, is a type A such that, for any elements a, a′ : A,
the type a =A a′ is a proposition.

. A (1-)groupoid, or 1-type, is a type A such that, for any a, a′ : A,
the type a =A a′ is a set.

. A 2-groupoid, or 2-type, is a typeA such that, for any a, a′ : A, the
type a =A a′ is a groupoid.

. An-type forn ≥ −1 is a typeA such that, for any elements a, a′ : A,
the type a =A a′ is a (n − 1)-type.

Intuitively, a type is contractiblewhen it is equivalent to1. Given such a
definition, we could think that the circle is contractible: we can always
provide apathbetween twopoints on the circle, as it is path-connected.
However, our choice for the path must be continuous (induction prin-
ciple of the circle), and we can’t provide a continuous choice, thus the
circle isn’t contractible.

A mere proposition is a type such that there is at most one proof (up
to path), so it is either equivalent to 0 or 1. For example, the isEquiv( f )
type fromdefinition 12 is a proposition. The type is-n-type(A) of proofs
thatA is an n-type (which you can easily define by induction on n) is a
proposition.
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0 7 3 3 3 3

1 3 3 3 3 3

2 7 7 3 3 3

N 7 7 3 3 3

S1 7 7 7 3 3

Table 2 Some n-types

In a set, axiom K (from subsection 3.2, page 6) holds: any loop is refl.
A set is discrete as there are, up to homotopy, at most one path between
two points.

In a groupoid, you are allowed to have non-trivial loops. For example,
the circle S1 is a groupoid. We will discuss a bit more about groupoids
in section 4 when explaining deloopings of groups.

Lemma 8. If a type is an n-type then it is also an (n + k)-type for any
positive integer k :N. �

Table 2 gives examples of types (those defined previously) and if they
are n-types for n ∈ {−2,−1, 0, 1}.

3.11. Truncations.
Sometimes, it can be useful to turn some type into an n-type. Trunca-
tion is the universal way of doing this transformation.

Definition 14. The n-truncation of a type A, written ‖A‖n, is defined by
the following properties:

. there is an inclusion map |−|n : A→ ‖A‖n;

. it is an n-type.i

This is, in fact, a higher inductive definition. Sometimes, it can be use-
ful to “extract” an element a : A in ‖A‖n: this is known as truncation
elimination. Youcall onlyperformeliminationof ann-truncationwhen
eliminating to an n-type.

Proposition 12 (Truncation elimination). Given an n-type B, a map f :
A→ B induces a map f̃ : ‖A‖n → B such that

A ‖A‖n

B

←

→
|−|n

←

→f

←→ f̃

commutes. �

In [Uni13], a different construction (the “hubs and spokes” construc-
tion) is given for the n-truncation but, for most things, the implemen-
tation details don’t matter too much.

Proposition 13.   The operation ‖−‖n is functorial: a map f : A → B
induces a map ‖ f ‖n : ‖A‖n → ‖B‖n such that the following square
commutes:

A ‖A‖n

B ‖B‖n,

←

→
|−|n

←→f ←→ ‖ f ‖n

←

→
|−|n

i.e. ‖ f ‖n(|a|n) = | f (a)|n.

Proof.By elimination (as ‖B‖n is ann-type), themap |−|n◦ f : A→ ‖B‖n
induces a map ‖ f ‖n : ‖A‖n → ‖B‖n. �

iWe are allowed this in theHIT definition as is-n-type(‖A‖n) is (2n+4)-variablemap that
results in a path.

Proposition 14. A typeA is ann-type if and only if |−|n : A→ ‖A‖n is an
equivalence thus, by the univalence axiom, if and only if ‖A‖n = A. �

Propositional truncation. Let us define “being path-connected” as a
type inHoTT.The usual definition is: for any two points, there is a path
between those two points; so, we’d be tempted to define

isConnected(A) :≡7
∏
a,a′ :A

a = a′.

But this is just the definition of being a proposition, something isn’t
right. Whatweneed is to give proof that such a path exists,without ex-
plicitly giving thepath. This iswherepropositional truncation,or (−1)-
truncation, comes in: with the inclusion map, we can provide such a
path, but we can’t access it unless we are eliminating to a proposition.
We therefore define:

isConnected(A) :≡
∏
a,a′ :A

‖a = a′‖−1.

Usually, when writing “there (merely) exists x : A such that P(x)”, we
translate it to:

∥∥∥∑x:A P(x)
∥∥∥
−1
.

Paths in n-truncations. When dealing with paths in n-truncations,
there is an important equivalence of types (we’ll beusing it in section 4).
It can be proven using the encode/decodemethod (see [Uni13,Theorem
7.3.12]).

Proposition 15. For any x, y : A, there is an equivalence:

‖x =A y‖n '
(
|x|n+1 =‖A‖n+1 |y|n+1

)
.

�

This concludes our presentation ofHomotopy TypeTheory andCubical
Agda. We can nowmove on to the proof of the Galois Correspondence
in HoTT and its formalization in Cubical Agda.

4. The Galois Correspondence in HoTT.
To properly understand the proof, we start by introducing some useful
types, notations, and lemmas.

4.1. Homotopy pullbacks.
Given two maps f : A → C and g : B → C, we can take its homotopy
pullbackA ×C B such that this diagram commutes:

A ×C B A

B C.

←

→
pr1

←→pr2
y

←→ f

←

→g

It corresponds to the type:

A ×C B :≡
∑
a:A

∑
b:B

f (a) = g(b).

For the purpose of this internship, some properties on pullbackswhere
proven (see Pullback.agda for all Cubical Agda proofs related to pullbacks).
Appendix B gives more details on pullbacks.

Lemma 9 (Commutativity). We haveA ×C B = B ×C A. �

The pasting lemma is a common lemma used in Category Theory. We
give two versions of it: one vertical and one horizontal.

Lemma 10 (Horizontal pasting lemma).Wehave (A×D C)×C B = A×D B.
This correspond to the equality between the left-square pullback and
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the full-rectangle pullback:

X A ×D C A

B C D.

←

→

←→

y

←

→

←→

y

←→

←

→

←

→

�

Lemma 11 (Vertical pasting lemma).We have B ×C (C ×D A) = B ×D A.
This correspond to the equality between theupper-square pullback and
the full-rectangle pullback:

X B

C ×D A C

A D.

y

←

→

←→ ←→

y

←

→

←→ ←→

←

→

�

Definition 15. Given a map f : A → B and b : B, the (homotopy) fiber
of f at b is

fib f (b) :≡
∑
a:A

f (a) = b.

The connection between homotopy fibers and homotopy pullbacks is
very simple and yet very useful as we’ll see:

fib f (b) 1

A B

y

←

→

←→ ←→ pickb

←

→
f

A ×B 1 ≡
∑
a:A

∑
u:1

f (a) = pickb(u)

=
∑
a:A

f (a) = b

≡ fib f (b).

where pickb = u 7→ b.

4.2. Deloopings of groups.
A group G can be represented in different ways in HoTT: one simple
idea is as an element of the type∑

G:U

∑
f :G→G→G

∑
i:G→G

∑
z:G

is-assoc( f ) × is-inverse( f , i, z) × is-neutral( f , z),

where is-assoc, is-inverse and is-neutral are defined as expected. This is
known as an external representation. A simpler (and equivalent) way
of seeing is using a delooping of a group, this is known as an internal
representation of a group.

Definition 16. The loop space of a pointed type (A, a) is the type
Ω(A, a) :≡ a =A a. The fundamental group of a pointed type (A, a) is
the typeπ1(A, a) :≡ ‖a =A a‖0, i.e. the set of loops at a up to homotopy.

When the type is a groupoid, then its loop space is the fundamental
group (because a =A a is a set). It has a group-like structure with con-
catenation of paths and path-reversing as operations and refla as neu-
tral element.

One very simple representation of a group G would be as a pointed
groupoid (A, a) such thatπ1(A, a) is the groupG. Does a groupoid like
this always exist? The answer is yes, it is known as a delooping of G,
written B G, and it can be defined as a higher inductive type.

Proposition 16 ([CMO25, Theorem 3]). For any groupG, there is a pointed
connected groupoid B G such that Ω(B G) = G. Conversely, for any
pointed connected groupoid (A, a), we have that BΩ(A, a) = (A, a).
These operationsΩ and B are functorial. We therefore have an equiv-

alence of categories:

Pointed
Connected
Groupoids

Groups

←

→

Ω

←→

B

.

In [CMO25], two constructions for deloopings are developed inCubical
Agda. One of the constructions as a higher inductive type:

. define a basepoint?B G;

. define a non-trivial loop `g : ?B G = ?B G for every element g;

. define an “identification of loops” (a homotopy) `g � `h = `gh for
every g, h ∈ G ;

. define it to be a groupoid.

In appendix B, a category-theory-based definition of this delooping is
given.

For the remainder of this document, we will be using deloopings of
groups. The fundamental group of a (pointed connected) type has a
simple delooping: its 1-truncation.

Proposition 17 ([MO25, Proposition 30]). For a pointed connected type
(A, a), one delooping of its fundamental group π1(A, a) is ‖A‖1.

The proof of this proposition uses the results on truncations and, in
particular, proposition 15:

Ω(‖A‖1, |a|1) ≡
(
|a|1 =‖A‖1 |a|1

)prop. 15
= ‖a =A a‖0 ≡ π1(A, a).

As the Galois correspondence deals with subgroups ofπ1(A, a), we have
to represent subgroups with the deloopings.

Definition 17. We say H is a subgroup of G when there is an injective
group homomorphism i : H ↪→ G.

In the formal proof (in Cubical Agda), we do not want to have to deal
with deloopings directly, just with the pointed connected groupoids.
So, it is important to characterize the delooping of an injection.

Lemma 12 ([Uni13, Theorem 7.2.1]).Given a type A, its loop spaces
Ω(A, a) are contractible for every a if and only ifA is a set. �

Proposition 18. We have i : H ↪→ G is injective if and only if the fibers
of B i : B G→ B H are sets (this is known as a 0-truncated map).

Proof.By [MO24, Lemma 11], we have that B(ker i) = ker(B i) where
ker(B i) :≡ fibB i(?B H)where?B H is the basepoint of B H.

. Suppose i injective and let x : B H. As B H is connected and being
a set is a proposition, we have a path from ?B H to x. So, we only
need to consider the case where x = ?B H (we can transport the
result along the previous path). We have that:

Ωker(B i) = ΩB(ker i) = ker i,

which is trivial (contractible/equivalent to 1), thusker(B i) is a set.

. Suppose B i is 0-truncated. We have:

ker i = ΩB(ker i) = Ω ker(B i)︸  ︷︷  ︸
set

,

therefore ker i is trivial (contractible/equivalent to 1), thus i is in-
jective.

�

4.3. Some useful types.
For the remainder of this section, fix some pointed path-connected
type (A, a). We define the type of pointed path-connected covering
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spaces of (A, a) to be:

Covering(A, a) :≡
∑
B:U

∑
b:B

∑
p:B→A


isCovering(p)

×

isConnected(B)
×

p(b) = a

 ,
where isCovering(p) :≡

∏
a′ :A isSet(fibp(a)).

Let us justify why such a definition is acceptable. The arguments come
from [HH18]:

The use of neighborhoods can be largely avoided because every space
constructed by the standard geometric realization of a simplicial set
is aCW-complex and thus satisfies all local connectedness properties
(for example local path-connectedness or semi-local simple connect-
edness). Moreover, every construct in type theory is continuousunder
this interpretation. Therefore, there is no need to mention local con-
nectivity or continuity, because we cannot define any “bad” space in
the type theory.

Homeomorphism is weakened to homotopic equivalence because,
again, it is impossible to distinguish homeomorphic but not homo-
topic objects inside the type theory.

In a way, HoTT only allows us to define well-behaved spaces and oper-
ations so we can take a step back from the usual topological details (lo-
cal path-connectedness for example) and focus on the important mat-
ter.

Next,wedefine the typeof subgroups. Intuitively (without considering
deloopings), this type would be

∑
H:Group H ↪→ G. But, using deloop-

ings and thanks to proposition 18, we obtain an easier-to-deal-with
type:

Subgroup(G) :≡
∑

BH:U

∑
?BH :BH

∑
Bi:BH→BG



isConnected(BH)
×

isGroupoid(BH)
×

is-0-truncated(Bi)
×

Bi(?BH) = ?BG


.

Notice the use of BG instead of B G: here, we don’t manipulate deloop-
ings directly, but rather use themas pointed connected groupoids such
that the inclusionmap is pointed and 0-truncated. For the special case
whereG ≡ π1(A, a), we use:

Subgroup(π1(A, a)) :≡
∑

BH:U

∑
?BH :BH

∑
Bi:BH→‖A‖1



isConnected(BH)
×

isGroupoid(BH)
×

is-0-truncated(Bi)
×

Bi(?BH) = |a|1


.

Thegoal of the proof of theGalois Correspondence is to show that there
is an equivalence

Subgroup(π1(A, a)) ' Covering(A, a).

For the rest of the section, we will write B G, B i, etc but treat it as if we
are not manipulating a delooping directly.

The next subsection will describe a construction of the universal cover.
After that, we will prove the Galois correspondance (by giving an iso-
morphism) in 4 parts:

section 4.5. given a subgroup, give a pointed connected covering;

section 4.6. given a covering, give a subgroup of π1(A, a);

section 4.7. given a subgroup, getting its pointed connected covering

and then getting the subgroup of this covering leads to the same
group;

section 4.8. given a covering, getting its subgroup and then getting
the covering of this subgroup leads to the same covering.

We will use the original proof in [MO25] as a basis, but the details can
be a bit different as the goal was to implement this proof in Cubical
Agda (without the use of explicit deloopings of groups).

4.4. Universal cover.
One way to construct the universal cover is with homotopy classes of
paths starting at some point, as seen in proposition 4. In HoTT, this
construction is translated into the type∑

b:A

‖a =A b‖0,

and, as said before, the assumptions that the space is “well-behaved”
so we do not need to assume A to be locally path-connected or semi-
locally simply-connected.

Proposition 19 ([HH18, Lemma 10]). For some path-connected pointed
type (A, a), the type

univ(A, a) :≡
∑
b:A

‖a =A b‖0

is a simply-connected covering ofA, thus is the universal cover ofA.

Proof. See UniversalCovering.agda. �

To understand how simply-connectedness is defined in HoTT, it is
easier to go back to the definition of connectedness. An equivalent
definition of isConnected(A) for some non-empty type A is: its set-
truncation ‖A‖0 is contractible. Set truncation removes any “holes”
(such as the one in S1) and is thus equivalent to the set of connected
components. Simply-connecteness of a typeA can now be defined by:
its 1-truncation ‖A‖1 is contractible. This way, we keep 2D “holes” but
fill higher dimensional ones (e.g. the one in S2, the 3D sphere) and, this
way, ‖A‖1 is contractible if and only if there are no 2D “holes”.

One important fact is that the universal cover is the fiber of the inclu-
sion map |−|1:

univ(A, a) ≡
∑
b:A

‖a =A b‖0 =
∑
b:A

(
|a|1 =‖A‖1 |b|1

)
= fib|−|1 (|a|1).

Thus, it is the pullback:

univ(A, a) 1

A ‖A‖1

←

→

y

←→ ←→ pick|a|1

←

→
|−|1

.

4.5. From Subgroups to Coverings.
See SubgroupToCovering.agda for this part of the proof in Cubical Agda.

Fix a subgroup G 6 π1(A, a) with i : G ↪→ π1(A, a) its inclusion map
(as said before, we will only consider its delooping B G and the deloop-
ing of its inclusion map B i). We construct the covering CG as the ho-
motopy pullback:

CG B G

A ‖A‖1

y

←

→

←→pG ←→ B i

←

→
|−|1

.

The projection map pG : CG → A will be the covering map. To show
that its fiber over an arbitrary element a′ is a set, we consider the fol-

– 13/18 –



lowing commutative pullback:

F(a′) CG B G

1 A ‖A‖1

←

→

←→

y

←→pG
y

←

→

←→ B i

←

→
picka′←

→

pick|a′ |1

←

→
|−|1

.

By the pasting lemma, we have the equality of the two pullbacks:

fibpG (a′) = 1 ×A CG = 1 ×‖A‖1 B G = fibB i(|a′|1),

which, by proposition 18 is a set.

Next, we define the point

?CG :≡ (?B G, a, r) : CG,

where r : B i(?B G) = |a|1 is the “pointing equality” of B i. We thus have
definitionally that pG(?CG ) = a as pG is the projection map along the
A-component.

Finally,we have to show thatCG is path-connected. To do that,we con-
sider the following commutative diagram:

∀g : B G

univ(A, ã) 1

CG B G

A ‖A‖1

←→

←

→

y ←→ pickg

←→pG

←

→
u

y

←→ B i

←

→
|−|1

.

We have that:

CG =
∑
g:B G

fibu(g) by [Uni13, Lemma 4.8.2] and ua

=
∑
g:B G

univ(A, ã) by vertical pasting lemma,

where ã is the 1-truncation-elimination of B i(g) (which is possible as
being connected is a proposition, so it is also a groupoid). And, we
have thatB G is connected and univ(A, ã) is connected, thusCG is path-
connected.

4.6. From Coverings to Subgroups.
See CoveringToSubgroup.agda for this part of the proof in Cubical Agda.

Consider a pointed path-connected covering (X, x) with the map p :
X→ A such that p is 0-truncated (its fibers are sets). The usual way of
mapping a covering to a subgroupofπ1(A, a) is by considering the fun-
damental group of the covering π1(X, x). Here, as we are considering
a connected covering, its 1-truncation ‖X‖1 is a delooping Bπ1(X, x).

By proposition 13, we have

X ‖X‖1

A ‖A‖1

←

→
|−|1

←→p ←→ ‖p‖1

←

→
|−|1

is a commutative diagram.

The type ‖X‖1 is a groupoid, it is connected as connectedness is pre-
served by truncation (‖‖X‖1‖0 = ‖X‖0 which is contractible). As the
given covering is pointed, we have r : p(x) = a, thus by

‖p‖1(|x|1) = |p(x)|1
ap|−|1 (r)

= |a|1,

we conclude that ‖p‖1 is a pointed map.

We only need to prove one last thing: the 1-truncation ‖p‖1 of the 0-

truncated map p is still 0-truncated. To do that we prove the following
lemma.

Lemma 13. For any a : A, there is a path fibp(a) = fib‖p‖1 (|a|1).

Proof.Using ua, we only need an isomorphism between the two types.

. Given x : X and r : p(x) =A a (deconstructing the element of the
fiber fibp(a)), then we give |x|1, transport(q, r−1) as the path where
r is the path given by proposition 15.

. Given u : ‖X‖1 and q : ‖p‖1(u) =‖A‖1 |a|1, we can eliminate u as
fibp(a) is a set, and we get x : X and q′ : |p(x)|1 = |a|1. We can also
eliminate transport(q′, r) : ‖p(x) = a‖1. Finally we construct the
element of fibp(x).

. The rest of the proof (proof that these two operations are inverses
of each other) can be found in CoveringToSubgroup.agda.

�

Lemma 14. The map ‖p‖1 is 1-truncated, i.e. for any element v : ‖A‖1,
the fiber fib‖p‖1 (v) is a set.

Proof. As being a set is a proposition (thus a groupoid),wedo truncation
elimination on v, and apply the previous lemma. �

4.7. Left inverse.
See LeftInv.agda and the folder LeftInv/ for this part of the proof in Cubi-
cal Agda.

The Agda proof is more technical than the one presented here or the
one presented in [MO25]. Feel free to look at the Agda code for more
details.

We consider G 6 π1(A, a) with its inclusion map i : G ↪→ π1(A, a).
Apply subsection 4.5 (subgroup to covering) and then subsection 4.6
(covering to subgroup) leads to the following diagram:

CG B G ‖CG‖1

A ‖A‖1

y

←

→

← →

|−|1

←→pG ←→ B i ←→

‖pG‖1

←

→
|−|1

.

Wewill write q? : B i(?B G) = a.

We want to give

. a path from ‖CG‖1 to B G;

. a dependent path from ‖pG‖1 to B i;

. a dependent path from?B G to |(a, ?B G, q?)|1;

. a dependent path from q? to refl|a|1 .

There is no need to provide a path from the proof that B G is connected
to the one that ‖CG‖1 is connected (and same for isGroupoid) as it is a
proposition (and all elements of a proposition are equal).

The hardest part is the last one, not mentioned in [MO25], but we will
give a short presentation of how the Agda proof works and refer the
interested reader to the code for more technical details.

Let us start with the path from B G to ‖CG‖1. We use the univalence
axiom and define an isomorphism between the two types.

. Givenanelementof ‖CG‖1weconstruct anelementofB Gbyelim-
inating (as B G is a groupoid), thus getting (a, g, r) : CG: we use
the element g : B G.

. Given an element g of B G, we eliminate B i(g) : ‖A‖1 thus get-
ting an element a : A with r : B i(g) = |a|1, and thus we use the
element |(a, g, r)|1 : ‖CG‖1.

. Those two operations are inverses of each other (see the code for
the full proof).
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B G ‖CG‖1

←

→
t

⇐

⇐
q

←

→

s

.

Then, we have the following concatenation of paths:

B i
dependent
{ x 7→ transport(refl,B i(transport(q, x)))

= B i ◦ s
= ‖pG‖1.

The first dependent path is a lemma called funTypeTransp in Cubical
Agda: it tells us that the transport of a function corresponds to pre-
and post-composing with the respective transports. The second path
is non-dependent and corresponds to the “propositional computation
rule of ua” (c.f. subsection 3.9). The last one is also non-dependent and
it simply (functionextensionality) is a truncationeliminationon thear-
gument of type ‖CG‖1 and consider the 3rd component of that element,
it is of type B i(g) = |a|1.

After that, we have a dependent path ?B G {dependent |(a, ?B G, q?)|1 by
simply transporting on the equality q and apply the propositional com-
putation rule of univalence.

Finally we have to give a dependent path between q? and refl|a|1 corre-
sponding to the equality of the two “pointing equalities.” This part is
a lot more developed in the Agda code but, to put it simply, we have to
give a non-dependent path between:

transport f ,x 7→ f (x)=|a|1
2 (q1, q2, q?) = refl|a|1 ,

where q1 and q2 are respectively the path between B i and ‖pG‖1, and
between ?B G and |?CG |1, and transport2 is the 2-variable version of
transport. By [Uni13, Theorem 2.11.3], and with Agda-like notations,
it is equivalent to giving a path (λ j. q1 j (q2 j)) = q?. We can then
decompose q1 and q2 in three part each and, as this function-path-
application (named congP in Cubical Agda) works well with path de-
compositions. We can thus look at each part separately. Each part
is located in its own file: LeftInv/Part1.agda, LeftInv/Part2.agda and
LeftInv/Part3.agda.

4.8. Right inverse.
See RightInv.agda and the folder RightInv/ for this part of the proof in Cubi-
cal Agda.

Fix some path-connected pointed covering (X, x) with the covering
map p : X → A and where q? : p(x) = a. Apply subsection 4.6 (cover-
ing to subgroup) and then subsection 4.5 (subgroup to covering) leads
to the following diagram:

X Cπ1(X) ‖X‖1

A ‖A‖1

←

→

p

←

→
e

← →

|−|1

y

←

→

←→ p̃ ←→ ‖p‖1

←

→
|−|1

,

where Cπ1(X) ≡
∑

a:A
∑

u:‖X‖1 ‖p‖1(u) = a and the e map is obtained
by:

e(x) :≡
(
p(x), |x|, refl|p(x)|1

)
: Cπ1(X).

An inverse map e′ : Cπ1(X) → X is possible by truncation-elimination
on the ‖X‖1-component, but it requires eliminating to a groupoid. The
trick is to use fibers: we define amapfib-e′ :

∏
a:A fibp̃(a)→ fibp(a) and

we can eliminate here as fibp(a) is a set. To define fib-e′(a, ((u, a′, q), r))
where

a, a′ : A,
u : ‖X‖1,
q : ‖p‖1(u) = |a′|1
r : a′ = a,

we eliminate u and get x : X with |p(x)|1 = |a′|1 and, thanks to propo-

sition 15 and another elimination, we get a path q′ : p(x) = a′, thus
getting (x, q′ � r) : fibp(a). Then, we can define e′ by

e′(v) :≡ pr1(fib-e′(p̃(v), (v, reflp̃(v)))).

We have that e′(e(x)) = x holds definitionally. On the other hand, the
proof that e(e′(v)) = vneedsmorework. Wecan supposev ≡ (a, |x|1, q)
and that we have a path q′ : p(x) = a by truncation elimination and
proposition 15. Then, we have that:

e(e′(v)) ≡ e(pr1(fib-e′(a, (v, refla))))
= e(pr1(x, q′ � refla))
≡ e(x)

≡ (p(x), |x|, refl|p(x)|1 )

= (a, |x|, q′).

where the last equality is obtained by induction on q′, abstracting
over a. Thus concluding the construction of r : X = Cπ1(X).

X Cπ1(X) ‖X‖1

A ‖A‖1

←

→
p

←→e

⇐

⇐
r

← →

|−|1

←

→

e′
y

←

→

←→ p̃ ←→ ‖p‖1

←

→
|−|1

.

Next, we give a dependent path between p̃ and p:

p̃
dependent
{ x 7→ transport(refl, p̃(transport(r, x)))

= p̃ ◦ e
≡ p.

Thefirst equality is funTypeTransp, the secondone isby the computation
rule of ua.

By the computation rule of ua we also have that the equality of base-
points as

e′(?Cπ1(X) ) ≡ e′(a, |x|, ap|−|1 (q?)) ≡ x.

Finally, it remains the equality of the “pointing equalities” (a dependent
path between refla and p?) which is done, once again, by decomposing
the two paths and treating them individually.

4.9. Galois Correspondence.
We can now conclude:

Theorem 2. For any path-connectedj pointed type (A, a),

Subgroup(π1(A, a)) ' Covering(A, a).

�

This proof has been fully verified in Cubical Agda and the source code
is available on GitHub:

https://github.com/hugo-s29/classifying-covering-types-agda/.

Compiling this proof is very slow: expect about 4 to 5 hours of waiting.
A Python script is provided to start multiple Agda instances to compile
files in parallel when possible.

5. Conclusion.
In this proof of the Galois Correspondence, the use of categorical con-
structs (in this case, pullbacks) interpreted through the lens of Homo-
topy TypeTheory was essential. It allowed us to shorten the proof and
to abstract if from fairly technical topology-related topics. Could other

jBy the way, in the proof, we didn’t explicitly use that A was path-connected, but it is a
hidden assumption as we are using ‖A‖1 as a delooping of π1(A, a).
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theorems inAlgebraic Topology beproven thisway? Proofs like this one
are more easily generalizable and extendable compared to the classic
ones. Thesegeneralizationgiveusmoreunderstanding into the (some-
times deep) links between topological constructs.
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A. Context of this internship.
This internship was done in the Cosynus team of the LIX laboratory at
École Polytechnique (c.f. figure 3) with, as of writing this, seven per-
manent members and twelve Ph.D. students. This team strongly fo-
cuses on the theory, andnotably by usingmodelling data andprocesses
as abstract models so correctness results, for example, can be proven.
Some of the main themes in the team include dealing concurrent sys-
tems and numerical systems using abstract interpretation, geometric
methods (including algebraic topology) and higher-dimensional cate-
gories. The LIX laboratory is a joint research unit with CRNS, INRIA
and École Polytechnique.

The Cosynus team is part of the proofs and algorithms pole along with
the PARTOUT (Proof Automation and RepresenTation: a fOundation
of compUtation and deducTion), AlCo (Algorithms and Complexity)
and PhIQuS (Physics, Information Theory, and Quantum Simulation)
teams. Seminars are in common with the four teams and, as they are
about different subjects, allow us to see the world of Mathematics and
Computer Science from a different point of view.

Figure 3 Logos of the LIX Laboratory and École Polytechnique

B. Some background in Category Theory.
Definition 18. A categoryC is defined as:

. a collection of objectswrittenObC;

. for every two objects A,B in C, a collection ofmorphisms from A
to B, writtenHomC(A,B);

. for every three objectsA,B,C inC, a map

− ◦ − : HomC(A,B) ×HomC(B,C)→ HomC(A,C)

called composition;

. for every objectA inC, an identitymorphism fromA toAwritten
idA onA;

such that the following diagrams commute:

. for every f : HomC(A,B), g : HomC(B,C) and h : HomC(C,D),

A B C D←

→
f

←

→

g◦ f

←

→
g

←

→

h◦g

←

→
h

,

i.e. composition is associative;

. for every f : HomC(A,B),

A A B B←

→
idA

←

→

f

←

→
f

←

→

f

←

→
idB ,

i.e. identities are neutral elements with respect to composition.

Example 9.The categoryTop is defined by:

. objects: topological spaces;

. morphisms: continuous functions (a.k.a.maps in this document);

. composition: function composition;

. identity: identity map.

Example 10. The categoryGroups is the category formed by:

. objects: groups;

. morphisms: group homomorphisms:

. composition: function composition;

. identity: identity homomorphism.

This is the category of groups.

Example 11. Fix some group G. The 1-object group category B G is de-
fined this way:

. objects: one single object written •;

. morphisms: for every element g ∈ G, a morphism g : • → •;

. composition: g ◦ h := (gh) : • → •;

. identity: neutral element 1G : • → •.

Here, the group is the category. It is in factmore than a group, it is also
a groupoid (c.f. the following definition).

Definition 19. A groupoid is a category G such that every morphism is
an isomorphism, that is, every f : HomG(A,B) has an inverse f −1 :
HomG(B,A) such that

B A

B A

←

→
f−1

←→idB
←→

f

←→ idA

←

→
f−1

commutes.

Proposition 20. Given a groupoid G, for any object A in G, the collec-
tion of automorphisms of A, written AutG(A) := HomG(A,A), is a
group. �

For the special case of the groupoid B G, thenAutB G(•) = G.

Example 12. Given some topological spaceA,wedefine the fundamental
groupoidΠ1(A) by:

. objects: elements of typeA;

. morphisms: homotopy classes of paths inA;

. composition: q ◦ p := p � q : x{ z for p : x{ y and q : y{ z;

. identity: for any x : A, the path reflx : x{ x.

It is, in fact, a groupoid as every path is inversible.

We can recover the fundamental group usingΠ1(X):

π1(X, x) = AutΠ1(X)(x) = HomΠ1(X)(x, x).

Definition 20. A (covariant) functor F : A→ B fromA toB is given by:

. a map Fob : ObA → ObB;

. for every objectsA,B inA, a map

Fhom : HomA(A,B)→ HomB(Fob(A),Fob(B));

such that the following diagrams commute:

Fob(A) Fob(B) Fob(C)←

→
Fhom( f )

←

→

Fhom(g◦ f )

←

→
Fhom(g)
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Fob(A) Fob(A)

←

→
idFob(A)

←

→
Fhom(idA)

.

Wewill now write F for Fob and Fhom as it is often unambiguous.

Another way of defining functors is that it maps a commutative dia-
gram to a commutative diagram.

Example 13. For any group G,H, functors F : B G → B H are exactly
group homomorphismsG→ H, as

. F(•B G) can only be •B H;

. F(g · h) = F(g ◦ h) = F(g) ◦ F(h) = F(g) · F(h).

Example 14. We define the categoryGroupoids by:

. objects: groupoids;

. morphisms: functors;

. composition: functor composition (i.e. composing Fob and Fhom);

. identity: identity functor.

Example 15. Given a continuous map f : A → B, then it induces a
functor

Π1( f ) : Π1(A)→ Π1(B),

mapping a ∈ A to f (a) and homotopy classes of paths [ γ ] to [ γ ◦ f ].

The fundamental group and fundamental groupoid are functors:

Π1 : Top→ Groupoids π1 : Top? → Groups,

where the category Top? is the category of pointed topological spaces
(objects are pointed spaces, morphisms are pointed continuous func-
tions).

Definition 21. In a categoryC, the pullback of a diagram

A

B C

←→ f

←

→
g

is defined as an objectA×C B inC along with twomorphisms a, b inC
making

A ×C B A

B C

y

←

→
a

←→ b ←→ f

←

→
g

commute such that the following universal property holds:

for objectW along withmorphisms ã, b̃making

W A

B C

←

→
ã

←→ b̃ ←→ f

←

→
g

commute there is a uniquemorphism u : W → A ×C B such that

W

A ×C B A

B C

←

→

ã

←

→

b̃

←

→
u

y

←

→
a

←→ b ←→ f

←

→
g

commutes.

Proposition 21. Any two pullbacks of the same diagram are isomorphic.

Proof. LetU andV be two pullbacks of the same diagram. By universal
property ofU and V we get two morphisms x : U → V and y : V →
U. By universal property ofV (uniqueness ofmorphism), we have that
x◦y : V → V is the identity (as idV also commutes the samediagram).
By universal property ofU (uniqueness ofmorphism),we have that y◦
x : U → U is the identity (as idU also commutes the same diagram).
ThusU andV are isomorphic. �

Example 16. In the category of HoTT-definable spaces, all pullbacks ex-
ists. Consider a diagram

A

B C

←→ f

←

→
g

,

then we consider the type

A ×C B :≡
∑
a:A

∑
b:B

f (a) = g(b).

This diagram thus commutes:

A ×C B A

B C

←

→
pr1

←→ pr2 ←→ f

←

→
g

.

Consider a typeW along with morphisms ã, b̃making

W A

B C

←

→
ã

←→ b̃ ←→ f

←

→
g

with an equality h :
∏

w:W f (ã(w)) = g(b̃(w)), then we define, in a
canonical way,

u : W −→ A ×C B

w 7−→ (ã(w), b̃(w), h(w)).

This is the uniquek morphism such that the diagram

W

A ×C B A

B C

←

→

ã

←

→

b̃

←

→
u

←

→
a

←→ b ←→ f

←

→
g

is commutative. We can now conclude thatA×C B is the (up to isomor-

phism) pullback ofA
f
→ C

g
← B.

kWe could have used h(w) � refl or any path operation that give refl but, by here “unique”
means “up to path-homotopy”. And we cannot define a non-trivial loop without more
knowledge aboutA,B,C as those could be sets, or S1, or any other type.
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