Groupe symétrique

1 Exercice 1.

Soit $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 6 & 9 & 7 & 2 & 5 & 8 & 1 & 3 \end{pmatrix} \in \mathfrak{S}_9$. Déterminer sa décomposition canonique en produit de cycles disjoints, son ordre, sa signature, une décomposition en produit de transposition ainsi que σ^{100} .

On a $\sigma = \begin{pmatrix} 1 & 4 & 7 & 8 \end{pmatrix} \begin{pmatrix} 2 & 6 & 5 \end{pmatrix} \begin{pmatrix} 3 & 9 \end{pmatrix}$. Son ordre est le PPCM des ordres précédent, c'est donc 12. Sa signature est $(-1) \times 1 \times (-1) = 1$. On décompose en produit de transposition chaque cycle et on conclut. On calcule

$$\sigma^{100} = \begin{pmatrix} 1 & 4 & 7 & 8 \end{pmatrix}^{100} \begin{pmatrix} 2 & 6 & 5 \end{pmatrix}^{100} \begin{pmatrix} 3 & 9 \end{pmatrix}^{100},$$

car les cycles à supports disjoints commutent, et donc

$$\sigma^{100} = \begin{pmatrix} 2 & 6 & 5 \end{pmatrix}.$$

2 Exercice 2. Générateurs de \mathfrak{A}_n

Soit $n \geq 3$.

- 1. Rappeler pourquoi \mathfrak{A}_n est engendré par les 3-cycles.
- **2.** Démontrer que \mathfrak{A}_n est engendré par les carrés d'éléments de \mathfrak{S}_n . Est-ce que tout élément de \mathfrak{A}_n est un carré dans \mathfrak{S}_n ?
- **3.** Démontrer que pour $n \geq 5$, \mathfrak{A}_n est engendré par les bitranspositions.
- **4.** Démontrer que \mathfrak{A}_n est engendré par les 3-cycles de la forme $(1\ 2\ i)$ pour $i\in [3,n]$.

- **5.** En déduire que si $n \geq 5$ est impair, alors \mathfrak{A}_n est engendré par les permutations $(1\ 2\ 3)$ et $(3\ 4\ \cdots\ n)$ et que si $n \geq 4$ est pair, alors \mathfrak{A}_n est engendré par $(1\ 2\ 3)$ et $(1\ 2)(3\ 4\ \cdots\ n)$.
- 1. On utilise le fait que tout $\sigma \in \mathfrak{A}_n$ se décompose comme produit d'un nombre pair de transpositions. Puis, on utilise les égalités

$$\triangleright (i j)(i k) = (i j k),$$

$$\triangleright$$
 $(i \ j)(i \ j) = id,$

$$\triangleright (i j)(k \ell) = (i \ell k)(i j k),$$

pour déterminer un produit de 3-cycles égal à σ .

2. On utilise la question précédente. Soit $(a \ b \ c)$ un 3-cycle. On a alors $(a \ b \ c)^4 = (a \ b \ c)$, et donc $\sigma = (a \ b \ c)^2$. Ceci permet d'en déduire que les carrés de permutations engendrent \mathfrak{A}_n .

3 Exercice 3.

Soit $n \leq 5$. Démontrer que deux permutations de \mathfrak{S}_n sont conjuguées si et seulement si elles ont même ordre et même signature. Vérifier que c'est faux si n=6.

Table des matières

Groupe symétrique		1
1	Exercice 1	1
2	Exercice 2. Générateurs de \mathfrak{A}_n	1
3	Exercice 3	2